forked from AC-Amiya233/FedRep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FedProx.py
138 lines (116 loc) · 5.34 KB
/
FedProx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Modified from: https://github.com/JYWa/FedNova/blob/master/distoptim/FedProx.py
# credit goes to: Jianyu Wang
import torch
import torch.distributed as dist
from torch.optim.optimizer import Optimizer, required
from comm_helpers import communicate, flatten_tensors, unflatten_tensors
class FedProx(Optimizer):
r"""Implements FedAvg and FedProx. Local Solver can have momentum.
Nesterov momentum is based on the formula from
`On the importance of initialization and momentum in deep learning`__.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
ratio (float): relative sample size of client
gmf (float): global/server/slow momentum factor
mu (float): parameter for proximal local SGD
lr (float): learning rate
momentum (float, optional): momentum factor (default: 0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
dampening (float, optional): dampening for momentum (default: 0)
nesterov (bool, optional): enables Nesterov momentum (default: False)
Example:
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
.. note::
The implementation of SGD with Momentum/Nesterov subtly differs from
Sutskever et. al. and implementations in some other frameworks.
Considering the specific case of Momentum, the update can be written as
.. math::
v = \rho * v + g \\
p = p - lr * v
where p, g, v and :math:`\rho` denote the parameters, gradient,
velocity, and momentum respectively.
This is in contrast to Sutskever et. al. and
other frameworks which employ an update of the form
.. math::
v = \rho * v + lr * g \\
p = p - v
The Nesterov version is analogously modified.
"""
def __init__(self, params, ratio, gmf, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False, variance=0, mu=0):
self.gmf = gmf
self.ratio = ratio
self.itr = 0
self.a_sum = 0
self.mu = mu
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov, variance=variance)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(FedProx, self).__init__(params, defaults)
def __setstate__(self, state):
super(FedProx, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
param_state = self.state[p]
if 'old_init' not in param_state:
param_state['old_init'] = torch.clone(p.data).detach()
if momentum != 0:
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
# apply proximal update
d_p.add_(self.mu, p.data - param_state['old_init'])
p.data.add_(-group['lr'], d_p)
return loss
def average(self):
param_list = []
for group in self.param_groups:
for p in group['params']:
p.data.mul_(self.ratio)
param_list.append(p.data)
communicate(param_list, dist.all_reduce)
for group in self.param_groups:
for p in group['params']:
param_state = self.state[p]
param_state['old_init'] = torch.clone(p.data).detach()
# Reinitialize momentum buffer
if 'momentum_buffer' in param_state:
param_state['momentum_buffer'].zero_()