-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain_flood.py
258 lines (210 loc) · 9.59 KB
/
train_flood.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import csv
import os
import argparse
import datetime
from datetime import datetime
import torch
import torch.nn as nn
import numpy as np
from torchvision import transforms
from datasets.datasets import SN8Dataset
import models.pytorch_zoo.unet as unet
from models.other.unet import UNetSiamese
from models.other.siamunetdif import SiamUnet_diff
from models.other.siamnestedunet import SNUNet_ECAM
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--train_csv",
type=str,
required=True)
parser.add_argument("--val_csv",
type=str,
required=True)
parser.add_argument("--save_dir",
type=str,
required=True)
parser.add_argument("--model_name",
type=str,
required=True)
parser.add_argument("--lr",
type=float,
default=0.0001)
parser.add_argument("--batch_size",
type=int,
default=2)
parser.add_argument("--n_epochs",
type=int,
default=50)
parser.add_argument("--gpu",
type=int,
default=0)
args = parser.parse_args()
return args
def write_metrics_epoch(epoch, fieldnames, train_metrics, val_metrics, training_log_csv):
epoch_dict = {"epoch":epoch}
merged_metrics = {**epoch_dict, **train_metrics, **val_metrics}
with open(training_log_csv, 'a', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writerow(merged_metrics)
def save_model_checkpoint(model, checkpoint_model_path):
torch.save(model.state_dict(), checkpoint_model_path)
def save_best_model(model, best_model_path):
torch.save(model.state_dict(), best_model_path)
models = {
'resnet34_siamese': unet.Resnet34_siamese_upsample,
'resnet34': unet.Resnet34_upsample,
'resnet50': unet.Resnet50_upsample,
'resnet101': unet.Resnet101_upsample,
'seresnet50': unet.SeResnet50_upsample,
'seresnet101': unet.SeResnet101_upsample,
'seresnet152': unet.SeResnet152_upsample,
'seresnext50': unet.SeResnext50_32x4d_upsample,
'seresnext101': unet.SeResnext101_32x4d_upsample,
'unet_siamese':UNetSiamese,
'unet_siamese_dif':SiamUnet_diff,
'nestedunet_siamese':SNUNet_ECAM
}
if __name__ == "__main__":
args = parse_args()
train_csv = args.train_csv
val_csv = args.val_csv
save_dir = args.save_dir
model_name = args.model_name
initial_lr = args.lr
batch_size = args.batch_size
n_epochs = args.n_epochs
gpu = args.gpu
now = datetime.now()
date_total = str(now.strftime("%d-%m-%Y-%H-%M"))
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
soft_dice_loss_weight = 0.25
focal_loss_weight = 0.75
num_classes=5
class_weights = None
road_loss_weight = 0.5
building_loss_weight = 0.5
img_size = (1300,1300)
SEED=12
torch.manual_seed(SEED)
assert(os.path.exists(save_dir))
save_dir = os.path.join(save_dir, f"{model_name}_lr{'{:.2e}'.format(initial_lr)}_bs{batch_size}_{date_total}")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
os.chmod(save_dir, 0o777)
checkpoint_model_path = os.path.join(save_dir, "model_checkpoint.pth")
best_model_path = os.path.join(save_dir, "best_model.pth")
training_log_csv = os.path.join(save_dir, "log.csv")
# init the training log
with open(training_log_csv, 'w', newline='') as csvfile:
fieldnames = ['epoch', 'lr', 'train_tot_loss',
'val_tot_loss']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
train_dataset = SN8Dataset(train_csv,
data_to_load=["preimg","postimg","flood"],
img_size=img_size)
train_dataloader = torch.utils.data.DataLoader(train_dataset, shuffle=True, num_workers=2, batch_size=batch_size)
val_dataset = SN8Dataset(val_csv,
data_to_load=["preimg","postimg","flood"],
img_size=img_size)
val_dataloader = torch.utils.data.DataLoader(val_dataset, num_workers=2, batch_size=batch_size)
#model = models["resnet34"](num_classes=5, num_channels=6)
if model_name == "unet_siamese":
model = UNetSiamese(3, num_classes, bilinear=True)
else:
model = models[model_name](num_classes=num_classes, num_channels=3)
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=initial_lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=40, gamma=0.5)
if class_weights is None:
celoss = nn.CrossEntropyLoss()
else:
celoss = nn.CrossEntropyLoss(weight=class_weights)
best_loss = np.inf
for epoch in range(n_epochs):
print(f"EPOCH {epoch}")
### Training ##
model.train()
train_loss_val = 0
train_focal_loss = 0
train_soft_dice_loss = 0
train_bce_loss = 0
train_road_loss = 0
train_building_loss = 0
for i, data in enumerate(train_dataloader):
optimizer.zero_grad()
preimg, postimg, building, road, roadspeed, flood = data
preimg = preimg.cuda().float()
postimg = postimg.cuda().float()
flood = flood.numpy()
flood_shape = flood.shape
flood = np.append(np.zeros(shape=(flood_shape[0],1,flood_shape[2],flood_shape[3])), flood, axis=1)
flood = np.argmax(flood, axis = 1) # this is needed for cross-entropy loss.
flood = torch.tensor(flood).cuda()
# flood_pred = model(combinedimg) # this is for resnet34 with stacked preimg+postimg input
flood_pred = model(preimg, postimg) # this is for siamese resnet34 with stacked preimg+postimg input
#y_pred = F.sigmoid(flood_pred)
#focal_l = focal(y_pred, flood)
#dice_soft_l = soft_dice_loss(y_pred, flood)
#loss = (focal_loss_weight * focal_l + soft_dice_loss_weight * dice_soft_l)
loss = celoss(flood_pred, flood.long())
train_loss_val+=loss
#train_focal_loss += focal_l
#train_soft_dice_loss += dice_soft_l
loss.backward()
optimizer.step()
print(f" {str(np.round(i/len(train_dataloader)*100,2))}%: TRAIN LOSS: {(train_loss_val*1.0/(i+1)).item()}", end="\r")
print()
train_tot_loss = (train_loss_val*1.0/len(train_dataloader)).item()
#train_tot_focal = (train_focal_loss*1.0/len(train_dataloader)).item()
#train_tot_dice = (train_soft_dice_loss*1.0/len(train_dataloader)).item()
current_lr = scheduler.get_last_lr()[0]
scheduler.step()
train_metrics = {"lr":current_lr, "train_tot_loss":train_tot_loss}
# validation
model.eval()
val_loss_val = 0
val_focal_loss = 0
val_soft_dice_loss = 0
val_bce_loss = 0
val_road_loss = 0
with torch.no_grad():
for i, data in enumerate(val_dataloader):
preimg, postimg, building, road, roadspeed, flood = data
#combinedimg = torch.cat((preimg, postimg), dim=1)
#combinedimg = combinedimg.cuda().float()
preimg = preimg.cuda().float()
postimg = postimg.cuda().float()
flood = flood.numpy()
flood_shape = flood.shape
flood = np.append(np.zeros(shape=(flood_shape[0],1,flood_shape[2],flood_shape[3])), flood, axis=1)
flood = np.argmax(flood, axis = 1) # for crossentropy
#temp = np.zeros(shape=(flood_shape[0],6,flood_shape[2],flood_shape[3]))
#temp[:,:4] = flood
#temp[:,4] = np.max(flood[:,:2], axis=1)
#temp[:,5] = np.max(flood[:,2:], axis=1)
#flood = temp
flood = torch.tensor(flood).cuda()
# flood_pred = model(combinedimg) # this is for resnet34 with stacked preimg+postimg input
flood_pred = model(preimg, postimg) # this is for siamese resnet34 with stacked preimg+postimg input
#y_pred = F.sigmoid(flood_pred)
#focal_l = focal(y_pred, flood)
#dice_soft_l = soft_dice_loss(y_pred, flood)
#loss = (focal_loss_weight * focal_l + soft_dice_loss_weight * dice_soft_l)
loss = celoss(flood_pred, flood.long())
#val_focal_loss += focal_l
#val_soft_dice_loss += dice_soft_l
val_loss_val += loss
print(f" {str(np.round(i/len(val_dataloader)*100,2))}%: VAL LOSS: {(val_loss_val*1.0/(i+1)).item()}", end="\r")
print()
val_tot_loss = (val_loss_val*1.0/len(val_dataloader)).item()
#val_tot_focal = (val_focal_loss*1.0/len(val_dataloader)).item()
#val_tot_dice = (val_soft_dice_loss*1.0/len(val_dataloader)).item()
val_metrics = {"val_tot_loss":val_tot_loss}
write_metrics_epoch(epoch, fieldnames, train_metrics, val_metrics, training_log_csv)
save_model_checkpoint(model, checkpoint_model_path)
epoch_val_loss = val_metrics["val_tot_loss"]
if epoch_val_loss < best_loss:
print(f" loss improved from {np.round(best_loss, 6)} to {np.round(epoch_val_loss, 6)}. saving best model...")
best_loss = epoch_val_loss
save_best_model(model, best_model_path)