-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdashboard.py
218 lines (168 loc) · 7.94 KB
/
dashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import time
import pandas as pd
import streamlit as st
from opendashboards.assets import io, inspect, metric, plot
# prompt-based completion score stats
# instrospect specific RUN-UID-COMPLETION
# cache individual file loads
# Hotkey churn
DEFAULT_PROJECT = "openvalidators"
DEFAULT_FILTERS = {"tags": {"$in": [f'1.1.{i}' for i in range(10)]}}
DEFAULT_SELECTED_HOTKEYS = None
DEFAULT_SRC = 'followup'
DEFAULT_COMPLETION_NTOP = 10
DEFAULT_UID_NTOP = 10
# Set app config
st.set_page_config(
page_title='Validator Dashboard',
menu_items={
'Report a bug': "https://github.com/opentensor/dashboards/issues",
'About': """
This dashboard is part of the OpenTensor project. \n
To see runs in wandb, go to: \n
https://wandb.ai/opentensor-dev/openvalidators/table?workspace=default
"""
},
layout = "centered"
)
st.title('Validator :red[Analysis] Dashboard :eyes:')
# add vertical space
st.markdown('#')
st.markdown('#')
with st.spinner(text=f'Checking wandb...'):
df_runs = io.load_runs(project=DEFAULT_PROJECT, filters=DEFAULT_FILTERS, min_steps=10)
metric.wandb(df_runs)
# add vertical space
st.markdown('#')
st.markdown('#')
tab1, tab2, tab3, tab4 = st.tabs(["Raw Data", "UID Health", "Completions", "Prompt-based scoring"])
### Wandb Runs ###
with tab1:
st.markdown('#')
st.subheader(":violet[Run] Data")
with st.expander(f'Show :violet[raw] wandb data'):
edited_df = st.data_editor(
df_runs.assign(Select=False).set_index('Select'),
column_config={"Select": st.column_config.CheckboxColumn(required=True)},
disabled=df_runs.columns,
use_container_width=True,
)
df_runs_subset = df_runs[edited_df.index==True]
n_runs = len(df_runs_subset)
if n_runs:
df = io.load_data(df_runs_subset, load=True, save=True)
df = inspect.clean_data(df)
print(f'\nNans in columns: {df.isna().sum()}')
df_long = inspect.explode_data(df)
else:
st.info(f'You must select at least one run to load data')
st.stop()
metric.runs(df_long)
st.markdown('#')
st.subheader(":violet[Event] Data")
with st.expander(f'Show :violet[raw] event data for **{n_runs} selected runs**'):
raw_data_col1, raw_data_col2 = st.columns(2)
use_long_checkbox = raw_data_col1.checkbox('Use long format', value=True)
num_rows = raw_data_col2.slider('Number of rows:', min_value=1, max_value=100, value=10, key='num_rows')
st.dataframe(df_long.head(num_rows) if use_long_checkbox else df.head(num_rows),
use_container_width=True)
step_types = ['all']+['augment','followup','answer']#list(df.name.unique())
### UID Health ###
# TODO: Live time - time elapsed since moving_averaged_score for selected UID was 0 (lower bound so use >Time)
# TODO: Weight - Most recent weight for selected UID (Add warning if weight is 0 or most recent timestamp is not current)
with tab2:
st.markdown('#')
st.subheader("UID :violet[Health]")
st.info(f"Showing UID health metrics for **{n_runs} selected runs**")
uid_src = st.radio('Select event type:', step_types, horizontal=True, key='uid_src')
df_uid = df_long[df_long.name.str.contains(uid_src)] if uid_src != 'all' else df_long
metric.uids(df_uid, uid_src)
uids = st.multiselect('UID:', sorted(df_uid['uids'].unique()), key='uid')
with st.expander(f'Show UID health data for **{n_runs} selected runs** and **{len(uids)} selected UIDs**'):
st.markdown('#')
st.subheader(f"UID {uid_src.title()} :violet[Health]")
agg_uid_checkbox = st.checkbox('Aggregate UIDs', value=True)
if agg_uid_checkbox:
metric.uids(df_uid, uid_src, uids)
else:
for uid in uids:
st.caption(f'UID: {uid}')
metric.uids(df_uid, uid_src, [uid])
st.subheader(f'Cumulative completion frequency')
freq_col1, freq_col2 = st.columns(2)
freq_ntop = freq_col1.slider('Number of Completions:', min_value=10, max_value=1000, value=100, key='freq_ntop')
freq_rm_empty = freq_col2.checkbox('Remove empty (failed)', value=True, key='freq_rm_empty')
freq_cumulative = freq_col2.checkbox('Cumulative', value=False, key='freq_cumulative')
freq_normalize = freq_col2.checkbox('Normalize', value=True, key='freq_normalize')
plot.uid_completion_counts(df_uid, uids=uids, src=uid_src, ntop=freq_ntop, rm_empty=freq_rm_empty, cumulative=freq_cumulative, normalize=freq_normalize)
with st.expander(f'Show UID **{uid_src}** leaderboard data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader(f"UID {uid_src.title()} :violet[Leaderboard]")
uid_col1, uid_col2 = st.columns(2)
uid_ntop = uid_col1.slider('Number of UIDs:', min_value=1, max_value=50, value=DEFAULT_UID_NTOP, key='uid_ntop')
uid_agg = uid_col2.selectbox('Aggregation:', ('mean','min','max','size','nunique'), key='uid_agg')
plot.leaderboard(
df_uid,
ntop=uid_ntop,
group_on='uids',
agg_col='rewards',
agg=uid_agg
)
with st.expander(f'Show UID **{uid_src}** diversity data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader(f"UID {uid_src.title()} :violet[Diversity]")
rm_failed = st.checkbox(f'Remove failed **{uid_src}** completions', value=True)
plot.uid_diversty(df, rm_failed)
### Completions ###
with tab3:
st.markdown('#')
st.subheader('Completion :violet[Leaderboard]')
completion_info = st.empty()
msg_col1, msg_col2 = st.columns(2)
# completion_src = msg_col1.radio('Select one:', ['followup', 'answer'], horizontal=True, key='completion_src')
completion_src = st.radio('Select event type:', step_types, horizontal=True, key='completion_src')
df_comp = df_long[df_long.name.str.contains(completion_src)] if completion_src != 'all' else df_long
completion_info.info(f"Showing **{completion_src}** completions for **{n_runs} selected runs**")
completion_ntop = msg_col2.slider('Top k:', min_value=1, max_value=50, value=DEFAULT_COMPLETION_NTOP, key='completion_ntop')
completions = inspect.completions(df_long, 'completions')
# Get completions with highest average rewards
plot.leaderboard(
df_comp,
ntop=completion_ntop,
group_on='completions',
agg_col='rewards',
agg='mean',
alias=True
)
with st.expander(f'Show **{completion_src}** completion rewards data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader('Completion :violet[Rewards]')
completion_select = st.multiselect('Completions:', completions.index, default=completions.index[:3].tolist())
# completion_regex = st.text_input('Completion regex:', value='', key='completion_regex')
plot.completion_rewards(
df_comp,
completion_col='completions',
reward_col='rewards',
uid_col='uids',
ntop=completion_ntop,
completions=completion_select,
)
# TODO: show the UIDs which have used the selected completions
with st.expander(f'Show **{completion_src}** completion length data for **{n_runs} selected runs**'):
st.markdown('#')
st.subheader('Completion :violet[Length]')
completion_length_radio = st.radio('Use: ', ['characters','words','sentences'], key='completion_length_radio')
# Todo: use color to identify selected completions/ step names/ uids
plot.completion_length_time(
df_comp,
completion_col='completions',
uid_col='uids',
time_col='completion_times',
length_opt=completion_length_radio,
)
### Prompt-based scoring ###
with tab4:
# coming soon
st.info('Prompt-based scoring coming soon')
st.snow()
# st.dataframe(df_long_long.filter(regex=prompt_src).head())