forked from marella/ctransformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.h
205 lines (173 loc) · 5.59 KB
/
common.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#ifndef CTRANSFORMERS_MODELS_COMMON_H_
#define CTRANSFORMERS_MODELS_COMMON_H_
#include <algorithm>
#include <cmath>
#include <codecvt>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <locale>
#include <map>
#include <queue>
#include <random>
#include <regex>
#include <string>
#include <thread>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "ggml/ggml.h"
// https://github.com/ggerganov/ggml/blob/master/examples/common.cpp
struct gpt_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::vector<std::string> special_tokens;
void add_special_token(const std::string &token) {
special_tokens.push_back(token);
}
};
std::string convert_to_utf8(const std::wstring &input) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.to_bytes(input);
}
std::wstring convert_to_wstring(const std::string &input) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.from_bytes(input);
}
void gpt_split_words(std::string str, std::vector<std::string> &words) {
const std::string pattern =
R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
const std::regex re(pattern);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab &vocab,
const std::string &text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
// Generate the subpattern from the special_tokens vector if it's not empty
if (!vocab.special_tokens.empty()) {
const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
std::string special_tokens_subpattern;
for (const auto &token : vocab.special_tokens) {
if (!special_tokens_subpattern.empty()) {
special_tokens_subpattern += "|";
}
special_tokens_subpattern +=
std::regex_replace(token, escape, R"(\$&)");
}
std::regex re(special_tokens_subpattern);
std::smatch m;
// Split the text by special tokens.
while (std::regex_search(str, m, re)) {
// Split the substrings in-between special tokens into words.
gpt_split_words(m.prefix(), words);
// Add matched special tokens as words.
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
// Remaining text without special tokens will be handled below.
}
gpt_split_words(str, words);
}
// find the longest token that forms each word in words:
std::vector<gpt_vocab::id> tokens;
for (const auto &word : words) {
for (int i = 0; i < (int)word.size();) {
for (int j = word.size() - 1; j >= i; j--) {
auto cand = word.substr(i, j - i + 1);
auto it = vocab.token_to_id.find(cand);
if (it != vocab.token_to_id.end()) { // word.substr(i, j-i+1) in vocab
tokens.push_back(it->second);
i = j + 1;
break;
} else if (j == i) { // word.substr(i, 1) has no matching
fprintf(stderr, "%s: unknown token '%s'\n", __func__,
word.substr(i, 1).data());
i++;
}
}
}
}
return tokens;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab &vocab, const float *logits, int top_k, double top_p,
double temp, const float repetition_penalty,
const std::unordered_set<gpt_vocab::id> &recent_tokens, std::mt19937 &rng) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const double scale = 1.0 / temp;
for (int i = 0; i < n_logits; ++i) {
logits_id.push_back(std::make_pair(logits[i] * scale, i));
}
}
for (const gpt_vocab::id token : recent_tokens) {
// https://github.com/ggerganov/llama.cpp/blob/3e5aa8a1c44051153d6d7b3eeca2f4b4e5fb310c/llama.cpp#L1690-L1717
// https://github.com/ggerganov/llama.cpp/blob/3e5aa8a1c44051153d6d7b3eeca2f4b4e5fb310c/examples/main/main.cpp#L432-L434
double &logit = logits_id[token].first;
if (logit <= 0) {
logit *= repetition_penalty;
} else {
logit /= repetition_penalty;
}
}
// find the top K tokens
std::partial_sort(logits_id.begin(), logits_id.begin() + top_k,
logits_id.end(),
[](const std::pair<double, gpt_vocab::id> &a,
const std::pair<double, gpt_vocab::id> &b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto &kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto &kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto &p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0 / cumsum;
for (int i = 0; i < (int)probs.size(); i++) {
probs[i] *= cumsum;
}
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
#endif