This is the reference C implementation of Argon2, the password-hashing function that won the Password Hashing Competition (PHC).
Argon2 is a password-hashing function that summarizes the state of the art in the design of memory-hard functions and can be used to hash passwords for credential storage, key derivation, or other applications.
It has a simple design aimed at the highest memory filling rate and effective use of multiple computing units, while still providing defense against tradeoff attacks (by exploiting the cache and memory organization of the recent processors).
Argon2 has two variants: Argon2d and Argon2i. Argon2d is faster and uses data-depending memory access, which makes it highly resistant against GPU cracking attacks and suitable for applications with no threats from side-channel timing attacks (eg. cryptocurrencies). Argon2i instead uses data-independent memory access, which is preferred for password hashing and password-based key derivation, but it is slower as it makes more passes over the memory to protect from tradeoff attacks.
Argon2i and Argon2d are parametrized by:
- A time cost, which defines the amount of computation realized and therefore the execution time, given in number of iterations
- A memory cost, which defines the memory usage, given in kibibytes
- A parallelism degree, which defines the number of parallel threads
The Argon2 document gives detailed specs and design rationale.
Please report bugs as issues on this repository.
make
builds the executable argon2
, the static library libargon2.a
,
and the shared library libargon2.so
(or libargon2.dylib
on OSX).
Make sure to run make test
to verify that your build produces valid
results.
argon2
is a command-line utility to test specific Argon2 instances
on your system. To show usage instructions, run
./argon2
without arguments as
Usage: ./argon2 salt [-d] [-t iterations] [-m memory] [-p parallelism]
Password is read from stdin
Parameters:
salt The salt to use, at most 16 characters
-d Use Argon2d instead of Argon2i (which is the default)
-t N Sets the number of iterations to N (default = 3)
-m N Sets the memory usage of 2^N KiB (default 12)
-p N Sets parallelism to N threads (default 1)
For example, to hash "password" using "somesalt" as a salt and doing 2 iterations, consuming 64 MiB, and using four parallel threads:
$ echo -n "password" | ./argon2 somesalt -t 2 -m 16 -p 4
Type: Argon2i
Iterations: 2
Memory: 65536 KiB
Parallelism: 4
Hash: 4162f32384d8f4790bd994cb73c83a4a29f076165ec18af3cfdcf10a8d1b9066
Encoded: $argon2i$m=65536,t=2,p=4$c29tZXNhbHQAAAAAAAAAAA$QWLzI4TY9HkL2ZTLc8g6SinwdhZewYrzz9zxCo0bkGY
0.271 seconds
Verification ok
libargon2
provides an API to both low-level and high-level functions
for using Argon2.
The example program below hashes the string "password" with Argon2i
using the high-level API and then using the low-level API. While the
high-level API only takes input/output buffers and the two cost
parameters, the low-level API additionally takes parallelism parameters
and several others, as defined in include/argon2.h
.
Here the time cost t_cost
is set to 2 iterations, the
memory cost m_cost
is set to 216 kibibytes (64 mebibytes),
and parallelism is set to 1 (single-thread).
Compile for example as gcc test.c libargon2.a -Isrc -o test
, if the program
below is named test.c
and placed in the project's root directory.
#include "argon2.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define HASHLEN 32
#define SALTLEN 16
#define PWD "password"
int main(void)
{
uint8_t hash1[HASHLEN];
uint8_t hash2[HASHLEN];
uint8_t salt[SALTLEN];
memset( salt, 0x00, SALTLEN );
uint8_t *pwd = (uint8_t *)strdup(PWD);
uint32_t pwdlen = strlen((char *)pwd);
uint32_t t_cost = 2; // 1-pass computation
uint32_t m_cost = (1<<16); // 64 mebibytes memory usage
uint32_t parallelism = 1; // number of threads and lanes
// high-level API
argon2i_hash_raw(t_cost, m_cost, parallelism, pwd, pwdlen, salt, SALTLEN, hash1, HASHLEN);
// low-level API
uint32_t lanes = parallelism;
uint32_t threads = parallelism;
argon2_context context = {
hash2, HASHLEN,
pwd, pwdlen,
salt, SALTLEN,
NULL, 0, /* secret data */
NULL, 0, /* associated data */
t_cost, m_cost, parallelism, parallelism,
NULL, NULL, /* custom memory allocation / deallocation functions */
ARGON2_DEFAULT_FLAGS /* by default the password is zeroed on exit */
};
argon2i( &context );
free(pwd);
for( int i=0; i<HASHLEN; ++i ) printf( "%02x", hash1[i] ); printf( "\n" );
if (memcmp(hash1, hash2, HASHLEN)) {
for( int i=0; i<HASHLEN; ++i ) printf( "%02x", hash2[i] ); printf( "\n" );
printf("fail\n");
}
else printf("ok\n");
return 0;
}
To use Argon2d instead of Argon2i call argon2d_hash
instead of
argon2i_hash
using the high-level API, and argon2d
instead of
argon2i
using the low-level API.
To produce the crypt-like encoding rather than the raw hash, call
argon2i_hash_encoded
for Argon2i and argon2d_hash_encoded
for Argon2d.
See include/argon2.h
for API details.
Note: in this example the salt is set to the all-0x00
string for the
sake of simplicity, but in your application you should use a random salt.
make bench
creates the executable bench
, which measures the execution
time of various Argon2 instances:
$ ./bench
Argon2d 1 iterations 1 MiB 1 threads: 5.91 cpb 5.91 Mcycles
Argon2i 1 iterations 1 MiB 1 threads: 4.64 cpb 4.64 Mcycles
0.0041 seconds
Argon2d 1 iterations 1 MiB 2 threads: 2.76 cpb 2.76 Mcycles
Argon2i 1 iterations 1 MiB 2 threads: 2.87 cpb 2.87 Mcycles
0.0038 seconds
Argon2d 1 iterations 1 MiB 4 threads: 3.25 cpb 3.25 Mcycles
Argon2i 1 iterations 1 MiB 4 threads: 3.57 cpb 3.57 Mcycles
0.0048 seconds
(...)
Argon2d 1 iterations 4096 MiB 2 threads: 2.15 cpb 8788.08 Mcycles
Argon2i 1 iterations 4096 MiB 2 threads: 2.15 cpb 8821.59 Mcycles
13.0112 seconds
Argon2d 1 iterations 4096 MiB 4 threads: 1.79 cpb 7343.72 Mcycles
Argon2i 1 iterations 4096 MiB 4 threads: 2.72 cpb 11124.86 Mcycles
19.3974 seconds
(...)
Bindings are available for the following languages (make sure to read their documentation):
- Go by @tvdburgt
- Haskell by @ocharles
- Javascript, by @ranisalt
- JVM by @phXql
- Lua by @thibaultCha
- OCaml by @Khady
- Python, by @flamewow
- Python, by @hynek
- Ruby by @technion
- Rust by @quininer
There are two sets of test suites. One is a low level test for the hash function, the other tests the higher level API. Both of these are built and executed by running:
make test
Except for the components listed below, the Argon2 code in this repository is copyright (c) 2015 Daniel Dinu, Dmitry Khovratovich (main authors), Jean-Philippe Aumasson and Samuel Neves, and under CC0 license.
The string encoding routines in src/encoding.c
are
copyright (c) 2015 Thomas Pornin, and under CC0
license.
The BLAKE2 code in src/blake2/
is copyright (c) Samuel
Neves, 2013-2015, and under CC0
license.
All licenses are therefore GPL-compatible.