forked from pengxiao-song/LaWGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge_vocabulary.py
63 lines (54 loc) · 2.8 KB
/
merge_vocabulary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from transformers import LlamaTokenizer
from sentencepiece import sentencepiece_model_pb2 as model
import sentencepiece as sp
import argparse
import os
if __name__ == '__main__':
# Load arguments
parser = argparse.ArgumentParser()
parser.add_argument('--load_path', default='../src/models/base_model/chinese_llama_7b/tokenizer_chinese.model', type=str)
parser.add_argument('--save_dir', default='../src/models/base_model/save_chinese', type=str)
parser.add_argument('--voc_path', default='../data/vocabulary/legal_vocab_processed.txt', type=str)
args = parser.parse_args()
LOAD_PATH = args.load_path
SAVE_DIR = args.save_dir
VOC_PATH = args.voc_path
# Load pre-trained llama tokenizer and sentencepiece model
llama_spm = model.ModelProto()
llama_spm.ParseFromString(open(LOAD_PATH, "rb").read())
# show size of llama's vocabulary
llama_spm_tokens_set = set(p.piece for p in llama_spm.pieces)
print(f"Size of initial llama's vocabulary: {len(llama_spm_tokens_set)}")
# Load custom vocabulary
new_tokens = open(VOC_PATH, "r").read().split("\n")
for token in new_tokens:
if token not in llama_spm_tokens_set:
new_token = model.ModelProto().SentencePiece()
new_token.piece = token
new_token.score = 0
llama_spm.pieces.append(new_token)
print(f"Size of merged llama's vocabulary: {len(llama_spm.pieces)}")
# save
os.makedirs(SAVE_DIR, exist_ok=True)
SAVE_MODEL_PATH = os.path.join(SAVE_DIR, 'tokenizer.model')
SAVE_VOCAB_PATH = os.path.join(SAVE_DIR, 'tokenizer.vocab')
with open(SAVE_MODEL_PATH, 'wb') as f:
f.write(llama_spm.SerializeToString())
with open(SAVE_VOCAB_PATH, 'w') as f:
f.writelines([f'{token.piece} {token.score}\n' for token in llama_spm.pieces])
tokenizer = LlamaTokenizer(SAVE_MODEL_PATH)
tokenizer.save_pretrained(SAVE_DIR)
print(f'New llama tokenizer and spm has been saved to {SAVE_DIR}')
# test
llama_tokenizer_old = LlamaTokenizer.from_pretrained(LOAD_PATH)
llama_tokenizer_new = LlamaTokenizer.from_pretrained(SAVE_DIR)
text = '''登记错误赔偿责任登记等手续登记等手续生效登记机构和登记办法登记机构赔偿后登记机构应当提供登记收费问题'''
print(f'Size of old vocabulary: {llama_tokenizer_old.vocab_size}')
print(f'Size of new vocabulary: {llama_tokenizer_new.vocab_size}')
print('All special tokens and ids in new llama:')
print(llama_tokenizer_new.all_special_tokens)
print(llama_tokenizer_new.all_special_ids)
print(llama_tokenizer_new.special_tokens_map)
print(f'Text:\n{text}')
print(f'Tokenized by LLaMA tokenizer:\n {llama_tokenizer_old.tokenize(text)}')
print(f'Tokenized by NEW LLaMA tokenizer:\n {llama_tokenizer_new.tokenize(text)}')