forked from google-research/l2p
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar100_l2p.py
138 lines (116 loc) · 4.41 KB
/
cifar100_l2p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# coding=utf-8
# Copyright 2020 The Learning-to-Prompt Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific Learning-to-Prompt governing permissions and
# limitations under the License.
# ==============================================================================
"""A config for continual learning."""
import ml_collections
def get_config():
"""Return config files for L2P on split CIFAR100."""
config = ml_collections.ConfigDict()
config.model_name = "ViT-B_16" # support various sized ViT models
config.per_device_batch_size = 16
config.dataset = "cifar100"
# Gaussian schedule for cifar100
config.gaussian_schedule = False
config.gaussian_mode = ""
config.offline_eval = False
config.recreate_eval = False
config.reinit_optimizer = True
config.eval_last_only = False
config.save_last_ckpt_only = True
config.learning_rate = 0.03
config.optim = "adam" # use "sgd" if unfreeze
config.sgd_momentum = 0.9
config.grad_clip_max_norm = 1.0
config.learning_rate_schedule = "constant"
config.warmup_epochs = 0
config.weight_decay = 0
config.num_epochs = 5
config.num_eval_steps = -1
config.eval_pad_last_batch = False
config.log_loss_every_steps = 3
config.eval_every_steps = -1
config.checkpoint_every_steps = 5000
config.shuffle_buffer_size = 10000
config.seed = 42
config.trial = 0
# resize cifar as imagenet input
config.input_size = 224
config.resize_size = 256
config.model_config = None
# load pretrained model
config.init_checkpoint = ml_collections.FieldReference(None, field_type=str)
# configuration for CL
config.continual = ml_collections.ConfigDict()
config.continual.num_tasks = 10
config.continual.num_classes_per_task = 10
config.continual.rand_seed = -1
config.continual.num_train_steps_per_task = -1
config.continual.train_mask = True
# if doing task incremental
config.continual.eval_task_inc = False
# if normalizing pre-logits
config.norm_pre_logits = False
config.weight_norm = False
config.temperature = 1
# if using 0-1 normalization for input image
config.norm_01 = True
config.reverse_task = False
# configuration for [cls] token
config.use_cls_token = True
config.task_specific_cls_token = False
# classification option for ViT
config.vit_classifier = "prompt"
# do not use G-Prompt in L2P
config.use_g_prompt = False
# use basic position and prompt-tuning of E-Prompt for L2P
config.use_e_prompt = True # Use E-Prompt
config.e_prompt_layer_idx = [0]
config.use_prefix_tune_for_e_prompt = False
# configuration for L2P
config.prompt_pool = True
config.prompt_pool_param = ml_collections.ConfigDict()
config.prompt_pool_param.pool_size = 10
config.prompt_pool_param.length = 10
config.prompt_pool_param.top_k = 4
config.prompt_pool_param.initializer = "uniform"
config.prompt_pool_param.prompt_key = True
config.prompt_pool_param.use_prompt_mask = False
config.prompt_pool_param.mask_first_epoch = False
config.prompt_pool_param.shared_prompt_pool = False
config.prompt_pool_param.shared_prompt_key = False
config.prompt_pool_param.batchwise_prompt = True
config.prompt_pool_param.prompt_key_init = "uniform"
config.prompt_pool_param.embedding_key = "cls"
config.predefined_key_path = ""
# freeze model parts
config.freeze_part = ["encoder", "embedding", "cls"]
config.freeze_bn_stats = False
# subsample dataset or not
config.subsample_rate = -1
# key loss
config.pull_constraint = True
config.pull_constraint_coeff = 1.0
# prompt utils
config.prompt_histogram = True
config.prompt_mask_mode = None
config.save_prompts = False
# if doing replay trick, not that if using replay with L2P, make sure
# to set config.freeze_part = [], ie, not freezing for better adaptation
# config.continual.replay = ml_collections.ConfigDict()
# config.continual.replay.num_samples_per_task = 100
# config.continual.replay.include_new_task = True
# config.continual.replay_no_mask = True
# config.continual.replay_reverse_mask = False
return config