Skip to content

StepNeverStop/RLs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

RLs: Reinforcement Learning Algorithm Based On PyTorch.

This project includes SOTA or classic RL(reinforcement learning) algorithms used for training agents by interacting with Unity through ml-agents Release 18 or with gym. The goal of this framework is to provide stable implementations of standard RL algorithms and simultaneously enable fast prototyping of new methods.

About

It aims to fill the need for a small, easily grokked codebase in which users can freely experiment with wild ideas (speculative research).

Characteristics

  • Suitable for Windows, Linux, and OSX
  • Almost reimplementation and competitive performance of original papers
  • Reusable modules
  • Clear hierarchical structure and easy code control
  • Compatible with OpenAI Gym and Unity3D Ml-agents
  • Restoring the training process from where it stopped, retraining on a new task, fine-tuning
  • Using other training task's model as parameter initialization, specifying --load

Supports

This project supports:

  • Unity3D ml-agents.
  • Gym{MuJoCo, PyBullet, gym_minigrid}, for now only two data types are compatibleβ€”β€”[Box, Discrete]. Support 99.65% environment settings of Gym(except Blackjack-v0, KellyCoinflip-v0, and KellyCoinflipGeneralized-v0). Support parallel training using gym envs, just need to specify --copys to how many agents you want to train in parallel.
    • Discrete -> Discrete (observation type -> action type)
    • Discrete -> Box
    • Box -> Discrete
    • Box -> Box
    • Box/Discrete -> Tuple(Discrete, Discrete, Discrete)
  • MultiAgent training. One group controls multiple agents.
  • MultiBrain training. Brains' model should be same algorithm or have the same learning-progress(perStep or perEpisode).
  • MultiImage input(only for ml-agents). Images will resized to same shape before store into replay buffer, like [84, 84, 3].
  • Four types of Replay Buffer, Default is ER:
  • Noisy Net for better exploration.
  • Intrinsic Curiosity Module for almost all off-policy algorithms implemented.

Advantages

  • Parallel training multiple scenes for Gym
  • Unified data format of environments between ml-agents and gym
  • Just need to write a single file for other algorithms' implementation(Similar algorithm structure).
  • Many controllable factors and adjustable parameters

Installation

method 1:

conda env create -f environment.yaml

method 2:

$ git clone https://github.com/StepNeverStop/RLs.git
$ cd RLs
$ conda create -n rls python=3.6
$ conda activate rls
# Windows
$ pip install -e .[windows]
# Linux or Mac OS
$ pip install -e .

If using ml-agents:

$ pip install -e .[unity]

If using atari:

$ pip install -e .[atari]

You can download the builded docker image from here:

$ docker pull keavnn/rls:latest

Implemented Algorithms

For now, these algorithms are available:

Algorithms(29) Discrete Continuous Image RNN Command parameter
Q-Learning/Sarsa/Expected Sarsa √ qs
CEM √ √ cem
PG √ √ √ pg
AC √ √ √ √ ac
A2C √ √ √ a2c
TRPO √ √ √ trpo
PPO √ √ √ ppo
DQN √ √ √ dqn
Double DQN √ √ √ ddqn
Dueling Double DQN √ √ √ dddqn
Averaged DQN √ √ √ averaged_dqn
Bootstrapped DQN √ √ √ bootstrappeddqn
Soft Q-Learning √ √ √ sql
C51 √ √ √ c51
QR-DQN √ √ √ qrdqn
IQN √ √ √ iqn
Rainbow √ √ √ rainbow
DPG √ √ √ √ dpg
DDPG √ √ √ √ ddpg
PD-DDPG √ √ √ √ pd_ddpg
TD3 √ √ √ √ td3
SAC(has V network) √ √ √ √ sac_v
SAC √ √ √ √ sac
TAC sac √ √ √ tac
MaxSQN √ √ √ maxsqn
OC √ √ √ √ oc
AOC √ √ √ √ aoc
PPOC √ √ √ √ ppoc
IOC √ √ √ √ ioc
HIRO √ √ hiro
CURL √ √ √ curl
IQL √ √ iql
VDN √ √ vdn
MADDPG √ √ √ maddpg

Getting started

"""
Usage:
    python [options]

Options:
    -h,--help                   show help info
    -a,--algorithm=<name>       specify the training algorithm [default: ppo]
    -c,--copys=<n>              nums of environment copys that collect data in parallel [default: 1]
    -d, --device=<str>          specify the device that operate Torch.Tensor [default: None]
    -e, --env=<name>            specify the environment name [default: CartPole-v0]
    -f,--file-name=<file>       specify the path of builded training environment of UNITY3D [default: None]
    -g,--graphic                whether show graphic interface when using UNITY3D [default: False]
    -i,--inference              inference the trained model, not train policies [default: False]
    -p,--platform=<str>         specify the platform of training environment [default: gym]
    -l,--load=<name>            specify the name of pre-trained model that need to load [default: None]
    -m,--models=<n>             specify the number of trails that using different random seeds [default: 1]
    -n,--name=<name>            specify the name of this training task [default: None]
    -r,--rnn                    whether use rnn[GRU, LSTM, ...] or not [default: False]
    -s,--save-frequency=<n>     specify the interval that saving model checkpoint [default: None]
    -t,--train-step=<n>         specify the training step that optimize the policy model [default: None]
    -u,--unity                  whether training with UNITY3D editor [default: False]
    --port=<n>                  specify the port that communicate with training environment of UNITY3D [default: 5005]
    --apex=<str>                i.e. "learner"/"worker"/"buffer"/"evaluator" [default: None]
    --config-file=<file>        specify the path of training configuration file [default: None]
    --store-dir=<file>          specify the directory that store model, log and others [default: None]
    --seed=<n>                  specify the random seed of module random, numpy and pytorch [default: 42]
    --env-seed=<n>              specify the environment random seed [default: 42]
    --max-step=<n>              specify the maximum step per episode [default: None]
    --train-episode=<n>         specify the training maximum episode [default: None]
    --train-frame=<n>           specify the training maximum steps interacting with environment [default: None]
    --prefill-steps=<n>         specify the number of experiences that should be collected before start training, use for off-policy algorithms [default: None]
    --prefill-choose            whether choose action using model or choose randomly [default: False]
    --render-episode=<n>        specify when to render the graphic interface of gym environment [default: None]
    --info=<str>                write another information that describe this training task [default: None]
    --hostname                  whether concatenate hostname with the training name [default: False]
    --no-save                   specify whether save models/logs/summaries while training or not [default: False]
Example:
    python run.py
    python run.py -p gym -a dqn -e CartPole-v0 -c 12 -n dqn_cartpole --no-save
    python run.py -p unity -a ppo -n run_with_unity
    python run.py -p unity --file-name /root/env/3dball.app -a sac -n run_with_execution_file
"""

If you specify gym, unity, and environment executable file path simultaneously, the following priorities will be followed: gym > unity > unity_env.

Notes

  1. log, model, training parameter configuration, and data are stored in C:\RLData for Windows, or $HOME/RLData for Linux/OSX
  2. maybe need to use command su or sudo to run on a Linux/OSX
  3. record directory format is RLData/Environment/Algorithm/Behavior name(for ml-agents)/Training name/config&log&model
  4. make sure brains' number > 1 if specifying ma* algorithms like maddpg
  5. multi-agents algorithms doesn't support visual input and PER for now
  6. need 3 steps to implement a new algorithm
    1. write .py in rls/algos/{single/multi/hierarchical} directory and make the policy inherit from class Policy, On_Policy, Off_Policy or other super-class defined in rls/algos/base
    2. write default configuration in rls/configs/algorithms.yaml
    3. register new algorithm at dictionary algos in rls/algos/__init__.py, make sure the class name matches the name of the algorithm class
  7. set algorithms' hyper-parameters in rls/configs/algorithms.yaml
  8. set training default configuration in config.yaml
  9. change neural network structure in rls/nn/models.py
  10. MADDPG is only suitable for Unity3D ML-Agents for now.

Ongoing things

  • DARQN
  • ACER
  • Ape-X
  • R2D2
  • ACKTR

Giving credit

If using this repository for your research, please cite:

@misc{RLs,
  author = {Keavnn},
  title = {RLs: Reinforcement Learning research framework for Unity3D and Gym},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/StepNeverStop/RLs}},
}

Issues

Any questions/errors about this project, please let me know in here.