forked from ROCm/rocPRIM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_optimization.py
executable file
·808 lines (688 loc) · 40 KB
/
create_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
#!/usr/bin/env python3
# Copyright (c) 2022-2024 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""
This Python script is intended for the creation of autotuned configurations
for the supported rocPRIM algorithms based on benchmark results. The script
does not update the configurations automatically, the user is responsible for
installation and the correctness of the files
"""
import json
import re
import argparse
import os
import sys
import collections
import copy
import math
from enum import Enum
from dataclasses import dataclass
from collections import defaultdict
from typing import Dict, List, Callable, Optional, Tuple
from jinja2 import Environment, PackageLoader, select_autoescape
TARGET_ARCHITECTURES = ['gfx803', 'gfx900', 'gfx906', 'gfx908', 'gfx90a', 'gfx1030', 'gfx1100', 'gfx1102']
# C++ typename used for optional types
EMPTY_TYPENAME = "empty_type"
env = Environment(
loader=PackageLoader("create_optimization"),
lstrip_blocks=True,
trim_blocks=True
)
class NotSupportedError(Exception):
"""Exception raised for algorithms that are not supported
Attributes:
message -- explanation of the error
"""
def __init__(self, message):
self.message = message
super().__init__(self.message)
@dataclass
class SelectionType:
"""
Data class describing a type used to select a configuration.
"""
name: str
# True if rocprim::empty_type is a valid type in the algorithm's configuration.
is_optional: bool
# True if only the size of the type is relevant. If false, selection also happens based on rocprim::is_floating.
# Only selecting on size will limit the number of tuning benchmarks required and configs generated.
# For example, a sort by key will not perform any logic on the value type and only move the data.
# Hence it can select the value type on size only.
select_on_size_only: bool
@dataclass
class SelectionConst:
"""
Data class describing a constant (integral, enum) used to select a configuration.
"""
name: str
@dataclass
class FallbackCase:
"""
Data class describing a fallback case: a description for a set of types that
use the same tuned configuration.
"""
# Optional regex filter for the algorithm name.
algo_regex: Optional[str]
# C++ type for which to take the best tuned configuration.
based_on_type: str
# Inclusive maximum size of the type.
sizeof_max: int
# Exclusive minimum size of the type.
sizeof_min: int
# Whether the type has a floating point.
is_floating_point: bool
def translate_settings_to_cpp_metaprogramming(
fallback_configuration: List[Tuple[SelectionType, FallbackCase]],
const_configuration: List[SelectionConst]) -> str:
"""
Translates a list of named fallback configuration entries to C++ metaprogramming idioms.
"""
setting_list: List[str] = []
for (config_selection_type, fallback_entry) in fallback_configuration:
typename: str = config_selection_type.name
if fallback_entry.based_on_type == EMPTY_TYPENAME:
# If the entry is based on the empty type
# (which is not present in the fallback file, but separately inserted)
setting_list.append(f"(std::is_same<{typename}, rocprim::{EMPTY_TYPENAME}>::value)")
else:
# Only add a floating-point check on the first selection type. For the remaining selection types, a limited
# number of fallbacks are generated, which are based on the integral types.
if not config_selection_type.select_on_size_only:
negation: str = "" if fallback_entry.is_floating_point else "!"
output: str = negation + f"bool(rocprim::is_floating_point<{typename}>::value)"
setting_list.append(output)
setting_list.append(f"(sizeof({typename}) <= {fallback_entry.sizeof_max})")
# sizeof(type) will always be greater than zero, can omit the check if min is zero or smaller
if fallback_entry.sizeof_min > 0:
setting_list.append(f"(sizeof({typename}) > {fallback_entry.sizeof_min})")
# If the fallback entry has a sizeof of one (only true for int8_t) and the associated type is optional,
# we need an additional check since the empty type also has a sizeof of one
if fallback_entry.based_on_type == "int8_t" and config_selection_type.is_optional:
setting_list.append(f"(!std::is_same<{typename}, rocprim::{EMPTY_TYPENAME}>::value)")
for name, value in const_configuration.items():
setting_list.append(f"({name} == {value})")
return "std::enable_if_t<(" + " && ".join(setting_list) + ")>"
class BenchmarksOfArchitecture:
"""
Stores the benchmark results for a specific architecture and algorithm.
"""
def __init__(self, arch_name: str, config_selection_params, fallback_entries: List[FallbackCase], config_get_best, algorithm_name):
self.config_selection_params = config_selection_params
self.fallback_entries: List[FallbackCase] = fallback_entries
self.arch_name: str = arch_name
self.config_get_best: Callable[[Dict], Dict[str, str]] = config_get_best
self.algorithm_name: str = algorithm_name
# Dictionary storing the benchmarks
# Key is an instantiation of the configuration selection types
# Value is a list of all benchmark runs corresponding to that instantiation,
# these benchmarks in this list vary in the actual configuration used to run the benchmark
self.benchmarks = defaultdict(list)
def __get_instance_key(self, instanced_types):
"""
Takes in a list of instantiated types
in the form of (name, value)-pairs for some 'name' in the selection types.
Returns a hashable named tuple type where the names are based on the configuration selection types
and the values on the instantiated types. If an instanced type is not present for a selection type
a None object will be assigned as value.
The created key can be used to access the specific benchmark results for a given combination of instantiated
selection types in the benchmarks member variable
"""
Instance = collections.namedtuple(typename='Instance', field_names=[cfg_param.name for cfg_param in self.config_selection_params])
return Instance(**{field : instanced_types[field] if field in instanced_types.keys() else EMPTY_TYPENAME for field in Instance._fields})
def add_measurement(self, benchmark_data: Dict[str, str]):
"""
Adds a single benchmark run.
"""
instance_key = self.__get_instance_key(benchmark_data)
self.benchmarks[instance_key].append(benchmark_data)
@property
def name(self) -> str:
return self.arch_name
def __get_best_benchmark(self, instance_key) -> Dict[str, str]:
"""
Returns the best performing benchmark from a list of benchmarks.
For now, use the items per second as metric. in case the benchmark with the
given configuration is not present None is returned
"""
if instance_key in self.benchmarks.keys():
return self.config_get_best(self.benchmarks[instance_key])
else:
return None
@property
def best_config_by_selection_types(self):
"""
Returns a dictionary containing each instantion of the selection configuration as a key
and the single best performing benchmark run as a value.
"""
output = {}
for instance, benchmarks in self.benchmarks.items():
output[instance] = self.__get_best_benchmark(instance)
return output
def __add_fallback_to_output(
self,
output,
fallback_configuration: List[Tuple[SelectionType, FallbackCase]],
const_configurations: List[SelectionConst]):
"""
searches for specific fallback configuration in benchmark results and adds it to the output
:param output: list of strings to append to
:param fallback_configuration: the configuration to look for
:param const_configurations: list of constant selection parameters
:return:
"""
search_key: Dict[str, str] = {
config_selection_type.name : fallback_entry.based_on_type for (config_selection_type, fallback_entry) in fallback_configuration}
for const_configuration in (const_configurations or [{}]):
for k, v in const_configuration.items():
search_key[k] = v
best_benchmark_result: Dict[str, str] = self.__get_best_benchmark(self.__get_instance_key(search_key))
print_config: str = ', '.join([f'{k} = {v}' for k, v in search_key.items()])
if best_benchmark_result is None:
print(
f'WARNING {self.name}: No {self.algorithm_name} measurement found for creating fallback configuration '
f'entry for \"{print_config}\"')
else:
output.append((print_config,
translate_settings_to_cpp_metaprogramming(fallback_configuration,
const_configuration),
best_benchmark_result))
@property
def fallback_types(self):
"""
Provides a fallback triplet of (string describing the type used for generating the fallback,
C++ enable if statement, benchmark containing the selected parameters for the algorithm).
This function only supports algorithms with at most two types.
"""
output = []
# Collect all combination of constant selection parameters from avaliable benchmark results
const_configurations = []
config_selection_const_names = [cfg_param.name for cfg_param in self.config_selection_params if isinstance(cfg_param, SelectionConst)]
if config_selection_const_names:
Consts = collections.namedtuple(typename='Consts', field_names=config_selection_const_names)
all_consts = [Consts(**{k : v for k, v in instance_key._asdict().items() if k in config_selection_const_names}) for instance_key in self.benchmarks.keys()]
const_configurations = [c._asdict() for c in sorted(set(all_consts))]
config_selection_types = [cfg_param for cfg_param in self.config_selection_params if isinstance(cfg_param, SelectionType)]
# If there are more than two selection types, do not generate fallback cases
# Otherwise, too many benchmarks would be needed support for the full product of fallback entries
if len(config_selection_types) > 2:
print(f"INFO: not generating fallbacks for {self.algorithm_name} as it has too many types.")
return output
# If the type requires selection on size only, the floating-point fallback entries as skipped.
# The decision to skip floating-point entries instead of integral ones is arbitrary.
def skip_entry(config_selection_type: SelectionType, fallback_entry: FallbackCase) -> bool:
return config_selection_type.select_on_size_only and fallback_entry.is_floating_point
# If there is exactly one type, generate full fallbacks. Note that this type will never be optional
if len(config_selection_types) == 1:
config_selection_type = config_selection_types[0]
if config_selection_type.is_optional:
raise (ValueError(f'Algorithm "{self.algorithm_name}" has a single type that is optional'))
for entry in self.fallback_entries:
if skip_entry(config_selection_type, entry):
continue
# Let the single selection type be based on the current fallback entry
fallback_configuration = [(config_selection_type, entry)]
# Find the closest measurement and create the config line
self.__add_fallback_to_output(output, fallback_configuration, const_configurations)
# If there are two types, generate full fallbacks for the first type but limited fallbacks for the second type
if len(config_selection_types) == 2:
# Assume that the first type is not optional
if config_selection_types[0].is_optional:
raise (ValueError(f'Algorithm "{self.algorithm_name}" two types but the first is optional'))
# Enforce that only one type selects both on size and number representation (integral or floating)
# to limit the number of generated configs.
if not config_selection_types[0].select_on_size_only and not config_selection_types[1].select_on_size_only:
raise (ValueError(f'Algorithm "{self.algorithm_name}" two types but neither only selects on size'))
# Only based_on_type is relevant
empty_fallback = FallbackCase(None, EMPTY_TYPENAME, 0, 0, False)
# If a type is optional, also generate the fallbacks where the type is empty.
fallback_entries_0: List[FallbackCase] = self.fallback_entries
if config_selection_types[0].is_optional:
fallback_entries_0.append(empty_fallback)
fallback_entries_1: List[FallbackCase] = self.fallback_entries
if config_selection_types[1].is_optional:
fallback_entries_1.append(empty_fallback)
fallback_configuration: List[Tuple[SelectionType, FallbackCase]] = []
for fallback_0 in fallback_entries_0:
if skip_entry(config_selection_types[0], fallback_0):
continue
fallback_configuration.append((config_selection_types[0], fallback_0))
for fallback_1 in fallback_entries_1:
if skip_entry(config_selection_types[1], fallback_1):
continue
fallback_configuration.append((config_selection_types[1], fallback_1))
self.__add_fallback_to_output(output, fallback_configuration, const_configurations)
fallback_configuration.pop()
fallback_configuration.pop()
return output
# Default formula to pick the best configuration, only look at items_per_second.
def default_config_get_best(input: Dict) -> Dict[str, str]:
return max(input, key=lambda x: x.get('items_per_second', 0.0))
# If we can double the sorted items_per_block and items_per_second does not degrade more than ~10%, consider it superior.
def block_sort_config_get_best(input: Dict) -> Dict[str, str]:
return max(input, key=lambda x: x.get('items_per_second', 0.0)*((float(x['cfg']['bs'])*float(x['cfg']['ipt']))**(1/4)))
# Best configuration is a combination between best oddeven and best mergepath impl.
# We use oddeven only for small input sizes (< ~200K), so it is a hardcoded value which is the best for almost all cases.
# You can find this value in the tuning template
def merge_sort_block_merge_config_get_best(input: Dict) -> Dict[str, str]:
input_mergepath = list(filter(lambda x: (int(x.get('cfg').get('oddeven_size_limit')) == 0), input))
# Since merge_sort_block_merge is used after radix_sort_block_sort<256, 4>, and
# mergepath_block_size * mergepath_items_per_thread >= 256*4 should hold (TODO: this will be solved in the near future):
input_mergepath = list(filter(lambda x: (int(x.get('cfg').get('mergepath_bs'))*int(x.get('cfg').get('mergepath_ipt')) <= 1024), input_mergepath))
best_mergepath = max(input_mergepath, key=lambda x: x.get('items_per_second', 0.0))
return best_mergepath
class Algorithm:
"""
Aggregates the data for an algorithm, including the generation of the configuration file.
"""
def __init__(self, fallback_entries: List[FallbackCase], config_get_best = default_config_get_best):
self.architectures: Dict[str, BenchmarksOfArchitecture] = {}
self.fallback_entries: List[FallbackCase] = fallback_entries
self.config_get_best = config_get_best
def add_measurement(self, single_benchmark_data: Dict[str, str], architecture: str):
"""
Adds a single benchmark execution for a given architecture
"""
if architecture not in self.architectures:
self.architectures[architecture] = BenchmarksOfArchitecture(architecture, self.config_selection_params,
self.fallback_entries, self.config_get_best,
self.algorithm_name)
self.architectures[architecture].add_measurement(single_benchmark_data)
def create_config_file_content(self) -> str:
"""
Generate the content of the configuration file, including license
and header guards, based on general template file.
"""
if 'target_arch::gfx908' in self.architectures:
self.architectures['target_arch::unknown'] = copy.deepcopy(self.architectures['target_arch::gfx908'])
self.architectures['target_arch::unknown'].arch_name = 'target_arch::unknown'
if 'target_arch::gfx90a' not in self.architectures:
self.architectures['target_arch::gfx90a'] = copy.deepcopy(self.architectures['target_arch::gfx908'])
self.architectures['target_arch::gfx90a'].arch_name = 'target_arch::gfx90a'
algorithm_template = env.get_template(self.cpp_configuration_template_name)
rendered_template = algorithm_template.render(all_architectures=self.architectures.values())
return rendered_template
"""
Each algorithm uses ninja templates to generate C++ configuration specification.
The generated configuration file contains configs for two cases:
- No architecture or instantiation of configuration selection types is provided (general base case).
- The architecture and configuration selection types are provided, the configuration is based on the
benchmark results of similar types (fallback case).
config_selection_params is a list of parameters (types, constants) that are used to select a configuration.
The fallback file will be used to generate the fallback cases. If there are two types, one of these will only select
on the size of the type (defined by the config selection parameters), limiting the number of fallback cases.
If the type is optional, additional fallback configurations will be generated that match the case when the optional
selection type passed by the user is rocprim::empty_type. The config_selection_params should specify at least
one non-optional type. The optional type should not be the first type.
The 'name' fields should correspond to a named capturing group in the regex field of the benchmark,
these names should be valid C++ identifiers. The matched values in the name field of
the benchmark should also be valid C++ typenames. This is required as these names will be in the
generated C++ code.
"""
class AlgorithmDeviceHistogram(Algorithm):
algorithm_name = "device_histogram"
cpp_configuration_template_name = "histogram_config_template"
config_selection_params = [
SelectionType(name="value_type", is_optional=False, select_on_size_only=False),
SelectionConst(name="channels"),
SelectionConst(name="active_channels")]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceMergeSortBlockSort(Algorithm):
algorithm_name = "device_merge_sort_block_sort"
cpp_configuration_template_name = "mergesort_block_sort_config_template"
config_selection_params = [
SelectionType(name="key_type", is_optional=False, select_on_size_only=False),
SelectionType(name="value_type", is_optional=True, select_on_size_only=True)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries, block_sort_config_get_best)
class AlgorithmDeviceMergeSortBlockMerge(Algorithm):
algorithm_name = "device_merge_sort_block_merge"
cpp_configuration_template_name = "mergesort_block_merge_config_template"
config_selection_params = [
SelectionType(name="key_type", is_optional=False, select_on_size_only=False),
SelectionType(name="value_type", is_optional=True, select_on_size_only=True)]
def __init__(self, fallback_entries):
Algorithm.__init__(
self, fallback_entries, merge_sort_block_merge_config_get_best)
class AlgorithmDeviceRadixSortBlockSort(Algorithm):
algorithm_name = "device_radix_sort_block_sort"
cpp_configuration_template_name = "radixsort_block_sort_config_template"
config_selection_params = [
SelectionType(name="key_type", is_optional=False, select_on_size_only=False),
SelectionType(name="value_type", is_optional=True, select_on_size_only=True)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries, block_sort_config_get_best)
class AlgorithmDeviceRadixSortOnesweep(Algorithm):
algorithm_name = "device_radix_sort_onesweep"
cpp_configuration_template_name = "radixsort_onesweep_config_template"
config_selection_params = [
SelectionType(name="key_type", is_optional=False, select_on_size_only=False),
SelectionType(name="value_type", is_optional=True, select_on_size_only=True)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceReduce(Algorithm):
algorithm_name = "device_reduce"
config_selection_params = [
SelectionType(name="key_type", is_optional=False, select_on_size_only=False)]
cpp_configuration_template_name = "reduce_config_template"
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceScan(Algorithm):
algorithm_name = "device_scan"
cpp_configuration_template_name = "scan_config_template"
config_selection_params = [
SelectionType(name="value_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
# TODO select_on_size_only may need to get re-evaluated, it is likely that swapping the value
# of select_on_size_only for key and value gives better results
class AlgorithmDeviceScanByKey(Algorithm):
algorithm_name = "device_scan_by_key"
cpp_configuration_template_name = "scanbykey_config_template"
config_selection_params = [
SelectionType(name="key_type", is_optional=False, select_on_size_only=False),
SelectionType(name="value_type", is_optional=False, select_on_size_only=True)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceBinarySearch(Algorithm):
algorithm_name = "device_binary_search"
cpp_configuration_template_name = "binary_search_config_template"
config_selection_params = [
SelectionType(name="value_type", is_optional=False, select_on_size_only=False),
SelectionType(name="output_type", is_optional=False, select_on_size_only=True)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceUpperBound(Algorithm):
algorithm_name = "device_upper_bound"
cpp_configuration_template_name = "upper_bound_config_template"
config_selection_params = [
SelectionType(name="value_type", is_optional=False, select_on_size_only=False),
SelectionType(name="output_type", is_optional=False, select_on_size_only=True)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceLowerBound(Algorithm):
algorithm_name = "device_lower_bound"
cpp_configuration_template_name = "lower_bound_config_template"
config_selection_params = [
SelectionType(name="value_type", is_optional=False, select_on_size_only=False),
SelectionType(name="output_type", is_optional=False, select_on_size_only=True)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceAdjacentDifference(Algorithm):
algorithm_name = "device_adjacent_difference"
cpp_configuration_template_name = "adjacent_difference_config_template"
config_selection_params = [
SelectionType(name="value_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceAdjacentDifferenceInplace(Algorithm):
algorithm_name = "device_adjacent_difference_inplace"
cpp_configuration_template_name = "adjacent_difference_inplace_config_template"
config_selection_params = [
SelectionType(name="value_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceSegmentedRadixSort(Algorithm):
algorithm_name = "device_segmented_radix_sort"
cpp_configuration_template_name = "segmented_radix_sort_config_template"
config_selection_params = [
SelectionType(name="key_type", is_optional=False, select_on_size_only=False),
SelectionType(name="value_type", is_optional=True, select_on_size_only=True)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceTransform(Algorithm):
algorithm_name = "device_transform"
cpp_configuration_template_name = "transform_config_template"
config_selection_params = [
SelectionType(name="value_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDevicePartitionTwoWayPredicate(Algorithm):
algorithm_name = "device_partition_two_way_predicate"
cpp_configuration_template_name = "partition_two_way_predicate_config_template"
config_selection_params = [
SelectionType(name="data_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDevicePartitionTwoWayFlag(Algorithm):
algorithm_name = "device_partition_two_way_flag"
cpp_configuration_template_name = "partition_two_way_flag_config_template"
config_selection_params = [
SelectionType(name="data_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDevicePartitionFlag(Algorithm):
algorithm_name = "device_partition_flag"
cpp_configuration_template_name = "partition_flag_config_template"
config_selection_params = [
SelectionType(name="data_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDevicePartitionPredicate(Algorithm):
algorithm_name = "device_partition_predicate"
cpp_configuration_template_name = "partition_predicate_config_template"
config_selection_params = [
SelectionType(name="data_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDevicePartitionThreeWay(Algorithm):
algorithm_name = "device_partition_three_way"
cpp_configuration_template_name = "partition_three_way_config_template"
config_selection_params = [
SelectionType(name="data_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceSelectFlag(Algorithm):
algorithm_name = "device_select_flag"
cpp_configuration_template_name = "select_flag_config_template"
config_selection_params = [
SelectionType(name="data_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceSelectPredicate(Algorithm):
algorithm_name = "device_select_predicate"
cpp_configuration_template_name = "select_predicate_config_template"
config_selection_params = [
SelectionType(name="data_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceSelectUnique(Algorithm):
algorithm_name = "device_select_unique"
cpp_configuration_template_name = "select_unique_config_template"
config_selection_params = [
SelectionType(name="data_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceSelectUniqueByKey(Algorithm):
algorithm_name = "device_select_unique_by_key"
cpp_configuration_template_name = "select_unique_by_key_config_template"
config_selection_params = [
SelectionType(name="key_type", is_optional=False, select_on_size_only=False),
SelectionType(name="value_type", is_optional=False, select_on_size_only=True)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
class AlgorithmDeviceReduceByKey(Algorithm):
algorithm_name = "device_reduce_by_key"
cpp_configuration_template_name = "reduce_by_key_config_template"
config_selection_params = [
SelectionType(name="key_type", is_optional=False, select_on_size_only=True),
SelectionType(name="value_type", is_optional=False, select_on_size_only=False)]
def __init__(self, fallback_entries):
Algorithm.__init__(self, fallback_entries)
def filt_algo_regex(e: FallbackCase, algorithm_name):
if e.algo_regex:
return re.match(e.algo_regex, algorithm_name) is not None
return True
def create_algorithm(algorithm_name: str, fallback_entries: List[FallbackCase]):
fallback_entries = list(filter(lambda e: filt_algo_regex(e, algorithm_name), fallback_entries))
if algorithm_name == 'device_histogram':
return AlgorithmDeviceHistogram(fallback_entries)
elif algorithm_name == 'device_merge_sort_block_sort':
return AlgorithmDeviceMergeSortBlockSort(fallback_entries)
elif algorithm_name == 'device_merge_sort_block_merge':
return AlgorithmDeviceMergeSortBlockMerge(fallback_entries)
elif algorithm_name == 'device_radix_sort_block_sort':
return AlgorithmDeviceRadixSortBlockSort(fallback_entries)
elif algorithm_name == 'device_radix_sort_onesweep':
return AlgorithmDeviceRadixSortOnesweep(fallback_entries)
elif algorithm_name == 'device_reduce':
return AlgorithmDeviceReduce(fallback_entries)
elif algorithm_name == 'device_scan':
return AlgorithmDeviceScan(fallback_entries)
elif algorithm_name == 'device_scan_by_key':
return AlgorithmDeviceScanByKey(fallback_entries)
elif algorithm_name == 'device_binary_search':
return AlgorithmDeviceBinarySearch(fallback_entries)
elif algorithm_name == 'device_upper_bound':
return AlgorithmDeviceUpperBound(fallback_entries)
elif algorithm_name == 'device_lower_bound':
return AlgorithmDeviceLowerBound(fallback_entries)
elif algorithm_name == 'device_adjacent_difference':
return AlgorithmDeviceAdjacentDifference(fallback_entries)
elif algorithm_name == 'device_adjacent_difference_inplace':
return AlgorithmDeviceAdjacentDifferenceInplace(fallback_entries)
elif algorithm_name == 'device_segmented_radix_sort':
return AlgorithmDeviceSegmentedRadixSort(fallback_entries)
elif algorithm_name == 'device_transform':
return AlgorithmDeviceTransform(fallback_entries)
elif algorithm_name == 'device_partition_two_way_predicate':
return AlgorithmDevicePartitionTwoWayPredicate(fallback_entries)
elif algorithm_name == 'device_partition_two_way_flag':
return AlgorithmDevicePartitionTwoWayFlag(fallback_entries)
elif algorithm_name == 'device_partition_flag':
return AlgorithmDevicePartitionFlag(fallback_entries)
elif algorithm_name == 'device_partition_predicate':
return AlgorithmDevicePartitionPredicate(fallback_entries)
elif algorithm_name == 'device_partition_three_way':
return AlgorithmDevicePartitionThreeWay(fallback_entries)
elif algorithm_name == 'device_select_flag':
return AlgorithmDeviceSelectFlag(fallback_entries)
elif algorithm_name == 'device_select_predicate':
return AlgorithmDeviceSelectPredicate(fallback_entries)
elif algorithm_name == 'device_select_unique':
return AlgorithmDeviceSelectUnique(fallback_entries)
elif algorithm_name == 'device_select_unique_by_key':
return AlgorithmDeviceSelectUniqueByKey(fallback_entries)
elif algorithm_name == 'device_reduce_by_key':
return AlgorithmDeviceReduceByKey(fallback_entries)
else:
raise(NotSupportedError(f'Algorithm "{algorithm_name}" is not supported (yet)'))
class BenchmarkDataManager:
"""
Aggregates the data from multiple benchmark files containing single benchmark runs
with different configurations. One file may contain data for multiple algorithms
"""
def __init__(self, fallback_config_file: str):
self.algorithms: Dict[str, Algorithm] = {}
abs_path_to_script_dir: str = os.path.dirname(os.path.abspath(__file__))
self.abs_path_to_template: str = os.path.join(abs_path_to_script_dir, 'config_template')
self.fallback_config_file: str = fallback_config_file
self.fallback_entries: List[FallbackCase] = self.__load_fallback_entries()
def __load_fallback_entries(self) -> List[FallbackCase]:
"""
Reads in fallback json file to list of dictionaries
"""
raw_fallback_entries = json.load(self.fallback_config_file)['fallback_cases']
fallback_entries: List[FallbackCase] = []
for fallback_settings_entry in raw_fallback_entries:
if "based_on_type" not in fallback_settings_entry \
or "sizeof_max_inclusive" not in fallback_settings_entry \
or "sizeof_min_exclusive" not in fallback_settings_entry \
or "is_floating_point" not in fallback_settings_entry:
raise (ValueError(f'Fallback entry "{raw_fallback_entries}" does not have all required fields'))
fallback_entries.append(FallbackCase(
None if "algo_regex" not in fallback_settings_entry else fallback_settings_entry["algo_regex"],
fallback_settings_entry["based_on_type"],
fallback_settings_entry["sizeof_max_inclusive"],
fallback_settings_entry["sizeof_min_exclusive"],
fallback_settings_entry["is_floating_point"]))
return fallback_entries
def __get_target_architecture_from_context(self, benchmark_run):
"""
Uses the benchmark run context embedded into the benchmark output json to retrieve the targeted architecture
"""
name_from_context = benchmark_run['context']['hdp_gcn_arch_name'].split(":")[0]
if name_from_context in TARGET_ARCHITECTURES:
return f'target_arch::{name_from_context}'
else:
raise RuntimeError(f"ERROR: unknown hdp_gcn_arch_name: {name_from_context}")
def __get_single_benchmark(self, single_benchmark):
"""
Enriches the benchmark the data in single_benchmark with the information stored in the actual name of the particular benchmark run
This information contains the different settings the benchmark has been executed with which will be used to create the customized
configuration case.
"""
# google benchmark may postfix the JSON name: extract the '{...}' substring
tokenized_name = re.match(r"{.*}", single_benchmark['name']).group(0)
tokenized_name = json.loads(tokenized_name)
if not tokenized_name:
raise RuntimeError(f"ERROR: cannot parse JSON from: \"{single_benchmark['name']}\"")
return dict(single_benchmark, **tokenized_name)
def __add_benchmark_to_algorithm(self, single_benchmark, arch):
"""
Adds a single_benchmark execution of a given Algorithm on a given architecture, to the Algorithm object
In case the Algorithm object does not exist, a new object will be created.
"""
algorithm_name: str = single_benchmark['lvl'] + "_" + single_benchmark['algo']
if 'subalgo' in single_benchmark:
algorithm_name += "_" + single_benchmark['subalgo']
if algorithm_name not in self.algorithms:
self.algorithms[algorithm_name] = create_algorithm(algorithm_name, self.fallback_entries)
self.algorithms[algorithm_name].add_measurement(single_benchmark, arch)
def add_run(self, benchmark_run_file_path: str):
"""
Adds a single file containing the results of benchmarks executed on a single architecture.
The benchmarks within the file may belong to different algorithms.
"""
with open(benchmark_run_file_path, "r") as file_handle:
benchmark_run_data = json.load(file_handle)
try:
print(f'INFO: Processing "{benchmark_run_file_path}"')
arch = self.__get_target_architecture_from_context(benchmark_run_data)
for raw_single_benchmark in benchmark_run_data['benchmarks']:
single_benchmark = self.__get_single_benchmark(raw_single_benchmark)
self.__add_benchmark_to_algorithm(single_benchmark, arch)
print(f'INFO: Successfully processed file "{benchmark_run_file_path}"')
except NotSupportedError as error:
print(f'WARNING: Could not process file "{benchmark_run_file_path}": {error}', file=sys.stderr, flush=True)
def write_configs_to_files(self, base_dir: str):
"""
For each algorithm, creates a file containing configurations and places these in base_dir.
"""
if len(self.algorithms) == 0:
raise(KeyError('No suitable files to process'))
for algo_name, algo in self.algorithms.items():
config: str = algo.create_config_file_content()
path_str: str = os.path.join(base_dir, f"{algo_name}.hpp")
with open(path_str, "w") as outfile:
outfile.write(config)
def main():
current_dir = os.path.dirname(os.path.abspath(__file__))
parser = argparse.ArgumentParser(description="Tool for generating optimized launch parameters for rocPRIM based on benchmark results")
parser.add_argument('-b','--benchmark_files', nargs='+', help="Benchmark files listed in the form <path_to_benchmark>.json")
parser.add_argument("-p", "--out_basedir", type=str, help="Base dir for the output files, for each algorithm a new file will be created in this directory", required=True)
parser.add_argument("-c", "--fallback_configuration", type=argparse.FileType('r'), default=os.path.join(current_dir, "fallback_config.json"), help="Configuration for fallbacks for not tested datatypes")
args = parser.parse_args()
benchmark_manager = BenchmarkDataManager(args.fallback_configuration)
for benchmark_run in args.benchmark_files:
benchmark_manager.add_run(benchmark_run)
benchmark_manager.write_configs_to_files(args.out_basedir)
if __name__ == '__main__':
main()