-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
497 lines (434 loc) · 20.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import argparse
import sys
import os
import random
import time
import subprocess
from datetime import datetime
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.parallel.data_parallel import data_parallel
from apex import amp
from sklearn.model_selection import train_test_split, KFold
from sklearn.utils import shuffle
from sklearn.metrics import confusion_matrix, roc_auc_score, fbeta_score, accuracy_score, recall_score, precision_score
import pandas as pd
from Bio import SeqIO
import tqdm
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
import itertools
from settings import *
def argparser():
parser = argparse.ArgumentParser()
# for model
parser.add_argument(
'--filter_sizes',
default=[8, 12, 16, 20, 24, 28, 32, 36],
type=int,
nargs='+',
help='Space seperated list of motif filter lengths. (ex, --filter_sizes 4 8 12)'
)
parser.add_argument(
'--num_filters',
default=256,
type=int,
help='number of filters per kernel'
)
parser.add_argument(
'--num_hidden',
type=int,
default=512,
help='Number of neurons in hidden layer.'
)
parser.add_argument(
'--l2',
type=float,
default=0.001,
help='(Lambda value / 2) of L2 regularizer on weights connected to last layer (0 to exclude).'
)
parser.add_argument(
'--dropout',
type=float,
default=0.5,
help='Rate for dropout.'
)
parser.add_argument(
'--num_classes',
type=int,
default=86,
help='Number of classes (families).'
)
parser.add_argument(
'--seq_len',
type=int,
default=1000,
help='Length of input sequences.'
)
# for learning
parser.add_argument(
'--lr',
type=float,
default=0.001,
help='Initial learning rate.'
)
parser.add_argument(
'--epochs',
type=int,
default=2,
help='Number of epochs to train.'
)
parser.add_argument(
'--batch_size',
type=int,
default=256,
help='Batch size. Must divide evenly into the dataset sizes.'
)
parser.add_argument(
'--train_file',
type=str,
default=os.path.join(DATA_DIR, default_train_file),
help='Directory for input data.'
)
parser.add_argument(
'--valid_file',
type=str,
default=os.path.join(DATA_DIR, default_valid_file),
help='Directory for input data.'
)
parser.add_argument(
'--test_file',
type=str,
default=os.path.join(DATA_DIR, default_test_file),
help='Directory for input data.'
)
parser.add_argument(
'--ood_file',
type=str,
default=os.path.join(DATA_DIR, default_train_file),
help='Directory for input ood data.'
)
parser.add_argument(
'--checkpoint_path',
type=str,
default=None,
help='Path to write checkpoint file.'
)
parser.add_argument(
'--log_dir',
type=str,
default=DATA_DIR,
help='Directory for log data.'
)
parser.add_argument(
'--log_interval',
type=int,
default=100,
help='Interval of steps for logging.'
)
parser.add_argument(
'--save_interval',
type=int,
default=100,
help='Interval of steps for save model.'
)
# test
parser.add_argument(
'--fine_tuning',
type=bool,
default=False,
help='If true, weight on last layer will not be restored.'
)
parser.add_argument(
'--fine_tuning_layers',
type=str,
nargs='+',
default=["fc2"],
help='Which layers should be restored. Default is ["fc2"].'
)
parser.add_argument(
'--save_prediction',
type=str,
default=None,
help='Path to save prediction'
)
parser.add_argument(
'--topk',
type=int,
default=1,
help='Top k prediction for predict'
)
parser.add_argument(
'--predict_file',
type=str,
default=None,
help='path for predict data.'
)
parser.add_argument(
'--iter_val', default=100, type=int, help='start epoch'
)
parser.add_argument(
'--model', default='PepCNN', type=str, help='model name'
)
parser.add_argument(
'--openset_model', default='ThresholdBaseline', type=str, help='model name for openset'
)
parser.add_argument(
'--filter_topk', default=100, type=int, help='top_filters to print'
)
parser.add_argument(
'--suffix', default='', type=str, help='suffix of the output folder'
)
parser.add_argument(
'--truth', default=None, type=str, help='ground truth of the simulated reads'
)
parser.add_argument(
'--embed_dim',
type=int,
default=10,
help='embedding dimension.'
)
parser.add_argument(
'--conv1_filter',
type=int,
default=3,
help='the filter size for the first convolution of CNNDeep.'
)
parser.add_argument(
'--epsilon',
type=float,
default=0.0012,
help='epsilon for ODIN.'
)
parser.add_argument(
'--temperature',
type=int,
default=1000,
help='temperature for ODIN.'
)
parser.add_argument(
'--repeat',
type=int,
default=5,
help='repeat for experiments.'
)
parser.add_argument(
'--threshold',
type=str,
default=None ,
help='path to threshold file.'
)
parser.add_argument('--swap_dim', action='store_true')
parser.add_argument('--apex', action='store_true')
try:
FLAGS, unparsed = parser.parse_known_args()
except:
parser.print_help()
sys.exit(1)
# check validity
# assert (len(FLAGS.filter_sizes) == len(FLAGS.num_filters))
return FLAGS
def save_checkpoint(checkpoint_path, model, optimizer):
state = {'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(state, checkpoint_path)
# print('model saved to %s' % checkpoint_path)
def load_checkpoint(checkpoint_path, model, optimizer=None):
state = torch.load(checkpoint_path)
model.load_state_dict(state['state_dict'])
if optimizer:
optimizer.load_state_dict(state['optimizer'])
print('model loaded from %s' % checkpoint_path)
def multi_f_measure(probs, labels, threshold=0.5, beta=1):
SMALL = 1e-6 # 0 #1e-12
batch_size = probs.size()[0]
# weather
l = labels
p = Variable((probs > threshold).float())
num_pos = torch.sum(p, 1)
num_pos_hat = torch.sum(l, 1)
tp = torch.sum(torch.mul(l, p), 1)
precise = tp / (num_pos + SMALL)
recall = tp / (num_pos_hat + SMALL)
fs = (1 + beta * beta) * precise * recall / (beta * beta * precise + recall + SMALL)
f = fs.sum() / batch_size
return f
def plot_confusion_matrix(cm,
target_names=None,
title='Confusion matrix',
cmap=None,
normalize=True):
"""
given a sklearn confusion matrix (cm), make a nice plot
Arguments
---------
cm: confusion matrix from sklearn.metrics.confusion_matrix
target_names: given classification classes such as [0, 1, 2]
the class names, for example: ['high', 'medium', 'low']
title: the text to display at the top of the matrix
cmap: the gradient of the values displayed from matplotlib.pyplot.cm
see http://matplotlib.org/examples/color/colormaps_reference.html
plt.get_cmap('jet') or plt.cm.Blues
normalize: If False, plot the raw numbers
If True, plot the proportions
Usage
-----
plot_confusion_matrix(cm = cm, # confusion matrix created by
# sklearn.metrics.confusion_matrix
normalize = True, # show proportions
target_names = y_labels_vals, # list of names of the classes
title = best_estimator_name) # title of graph
Citiation
---------
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
"""
accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy
if target_names is None:
target_names = list(range(cm.shape[0] + 1))
if cmap is None:
cmap = plt.get_cmap('Blues')
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:
plt.text(j, i, "{:0.4f}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
plt.show()
def metric(logit, truth):
with torch.no_grad():
prob = F.softmax(logit, 1)
value, top = prob.topk(3, dim=1, largest=True, sorted=True)
correct = top.eq(truth.view(-1, 1).expand_as(top))
return correct
def get_lrs(optimizer):
lrs = []
for pgs in optimizer.state_dict()['param_groups']:
lrs.append(pgs['lr'])
lrs = ['{:.6f}'.format(x) for x in lrs]
return lrs
GPCR_label = {'Adenosine': 0, 'Adrenergic': 1, 'Adrenocorticotropic': 2, 'Adrenomedullin': 3, 'Adrenoreceptor': 4,
'Allatostatin': 5, 'AlphaFac': 6, 'Anaphylatoxin': 7, 'Angiotensin': 8, 'BLT2': 9, 'BOSS': 10,
'Bombesin': 11, 'Bradykinin': 12, 'BrainSpec': 13, 'C5A': 14, 'Cadherin': 15, 'CalcLike': 16,
'Calcitonin': 17, 'Cannabinoid': 18, 'Chemokine': 19, 'Cholecystokinin': 20, 'Corticotropin': 21,
'Dopamine': 22, 'Duffy': 23, 'EMR1': 24, 'Endothelin': 25, 'ExtraCalc': 26, 'FollicleStim': 27,
'GABA': 28, 'GRHR': 29, 'Galanin': 30, 'Gastric': 31, 'Glucagon': 32, 'GlutaMeta': 33,
'Gonadotrophin': 34, 'Growth': 35, 'GrowthHorm': 36, 'Histamine': 37, 'Interleukin8': 38, 'Kiss1': 39,
'Latrophilin': 40, 'LysoEdg2': 41, 'MelaninConc': 42, 'Melanocortin': 43, 'Melanocyte': 44, 'Melaton': 45,
'Methuselah': 46, 'MuscAcetyl': 47, 'Muscarinicacetylcholine': 48, 'Neuromedin': 49, 'NeuromedinB-U': 50,
'Neuropeptide': 51, 'NeuropeptideFF': 52, 'Neurotensin': 53, 'Octopamine': 54, 'Olfactory': 55,
'Opoid': 56, 'Orexin': 57, 'Oxytocin': 58, 'PACAP': 59, 'Parathyroid': 60, 'Pheromone': 61,
'Platelet': 62, 'Prokineticin': 63, 'Prolactin': 64, 'Prostacyclin': 65, 'Prostaglandin': 66,
'Proteinase': 67, 'Purinergic': 68, 'PutPher': 69, 'Secretin': 70, 'Serotonin': 71, 'Somatostatin': 72,
'SubstanceK': 73, 'SubstanceP': 74, 'Tachykinin': 75, 'Taste': 76, 'Thrombin': 77, 'Thyro': 78,
'Thyrotropin': 79, 'Traceamine': 80, 'UrotensinII': 81, 'Vasoactive': 82, 'Vasopressin': 83,
'Vasotocin': 84, 'cAMP': 85}
GPCR_family = {'Adenosine': 'ClassA', 'Adrenergic': 'ClassA', 'Adrenocorticotropic': 'ClassA',
'Adrenomedullin': 'ClassA', 'Adrenoreceptor': 'ClassA', 'Allatostatin': 'ClassA', 'AlphaFac': 'ClassD',
'Anaphylatoxin': 'ClassA', 'Angiotensin': 'ClassA', 'BLT2': 'ClassA', 'BOSS': 'ClassC',
'Bombesin': 'ClassA', 'Bradykinin': 'ClassA', 'BrainSpec': 'ClassB', 'C5A': 'ClassA',
'Cadherin': 'ClassB', 'CalcLike': 'ClassC', 'Calcitonin': 'ClassB', 'Cannabinoid': 'ClassA',
'Chemokine': 'ClassA', 'Cholecystokinin': 'ClassA', 'Corticotropin': 'ClassB', 'Dopamine': 'ClassA',
'Duffy': 'ClassA', 'EMR1': 'ClassB', 'Endothelin': 'ClassA', 'ExtraCalc': 'ClassC',
'FollicleStim': 'ClassA', 'GABA': 'ClassC', 'GRHR': 'ClassA', 'Galanin': 'ClassA', 'Gastric': 'ClassB',
'Glucagon': 'ClassB', 'GlutaMeta': 'ClassC', 'Gonadotrophin': 'ClassA', 'Growth': 'ClassA',
'GrowthHorm': 'ClassB', 'Histamine': 'ClassA', 'Interleukin8': 'ClassA', 'Kiss1': 'ClassA',
'Latrophilin': 'ClassB', 'LysoEdg2': 'ClassA', 'MelaninConc': 'ClassA', 'Melanocortin': 'ClassA',
'Melanocyte': 'ClassA', 'Melaton': 'ClassA', 'Methuselah': 'ClassB', 'MuscAcetyl': 'ClassA',
'Muscarinicacetylcholine': 'ClassA', 'Neuromedin': 'ClassA', 'NeuromedinB-U': 'ClassA',
'Neuropeptide': 'ClassA', 'NeuropeptideFF': 'ClassA', 'Neurotensin': 'ClassA', 'Octopamine': 'ClassA',
'Olfactory': 'ClassA', 'Opoid': 'ClassA', 'Orexin': 'ClassA', 'Oxytocin': 'ClassA', 'PACAP': 'ClassB',
'Parathyroid': 'ClassB', 'Pheromone': 'ClassC', 'Platelet': 'ClassA', 'Prokineticin': 'ClassA',
'Prolactin': 'ClassA', 'Prostacyclin': 'ClassA', 'Prostaglandin': 'ClassA', 'Proteinase': 'ClassA',
'Purinergic': 'ClassA', 'PutPher': 'ClassC', 'Secretin': 'ClassB', 'Serotonin': 'ClassA',
'Somatostatin': 'ClassA', 'SubstanceK': 'ClassA', 'SubstanceP': 'ClassA', 'Tachykinin': 'ClassA',
'Taste': 'ClassC', 'Thrombin': 'ClassA', 'Thyro': 'ClassA', 'Thyrotropin': 'ClassA',
'Traceamine': 'ClassA', 'UrotensinII': 'ClassA', 'Vasoactive': 'ClassB', 'Vasopressin': 'ClassA',
'Vasotocin': 'ClassA', 'cAMP': 'ClassE'}
GPCR_subfamily = {'Adenosine': 'ClassA_Nucleotide', 'Adrenergic': 'ClassA_Adrenergic',
'Adrenocorticotropic': 'ClassA_Peptide', 'Adrenomedullin': 'ClassA_Peptide',
'Adrenoreceptor': 'ClassA_Amine', 'Allatostatin': 'ClassA_Peptide', 'AlphaFac': 'ClassD_Pheromone',
'Anaphylatoxin': 'ClassA_Anaphylatoxin', 'Angiotensin': 'ClassA_Peptide', 'BLT2': 'ClassA_Leuko',
'BOSS': 'ClassC_BOSS', 'Bombesin': 'ClassA_Peptide', 'Bradykinin': 'ClassA_Peptide',
'BrainSpec': 'ClassB_BrainSpec', 'C5A': 'ClassA_Peptide', 'Cadherin': 'ClassB_Cadherin',
'CalcLike': 'ClassC_CalcSense', 'Calcitonin': 'ClassB_Calcitonin',
'Cannabinoid': 'ClassA_Cannabinoid', 'Chemokine': 'ClassA_Peptide',
'Cholecystokinin': 'ClassA_Peptide', 'Corticotropin': 'ClassB_Corticotropin',
'Dopamine': 'ClassA_Amine', 'Duffy': 'ClassA_Peptide', 'EMR1': 'ClassB_EMR1',
'Endothelin': 'ClassA_Peptide', 'ExtraCalc': 'ClassC_CalcSense', 'FollicleStim': 'ClassA_Hormone',
'GABA': 'ClassC_GABA', 'GRHR': 'ClassA_GRHR', 'Galanin': 'ClassA_Peptide',
'Gastric': 'ClassB_Gastric', 'Glucagon': 'ClassB_Glucagon', 'GlutaMeta': 'ClassC_GlutaMeta',
'Gonadotrophin': 'ClassA_Hormone', 'Growth': 'ClassA_Thyro', 'GrowthHorm': 'ClassB_GrowthHorm',
'Histamine': 'ClassA_Amine', 'Interleukin8': 'ClassA_Interleukin8', 'Kiss1': 'ClassA_Peptide',
'Latrophilin': 'ClassB_Latrophilin', 'LysoEdg2': 'ClassA_Lyso', 'MelaninConc': 'ClassA_Peptide',
'Melanocortin': 'ClassA_Peptide', 'Melanocyte': 'ClassA_Peptide', 'Melaton': 'ClassA_Melaton',
'Methuselah': 'ClassB_Methuselah', 'MuscAcetyl': 'ClassA_Amine',
'Muscarinicacetylcholine': 'ClassA_Amine', 'Neuromedin': 'ClassA_Peptide',
'NeuromedinB-U': 'ClassA_Peptide', 'Neuropeptide': 'ClassA_Peptide',
'NeuropeptideFF': 'ClassA_Peptide', 'Neurotensin': 'ClassA_Peptide', 'Octopamine': 'ClassA_Amine',
'Olfactory': 'ClassA_Olfactory', 'Opoid': 'ClassA_Peptide', 'Orexin': 'ClassA_Peptide',
'Oxytocin': 'ClassA_Peptide', 'PACAP': 'ClassB_PACAP', 'Parathyroid': 'ClassB_Parathyroid',
'Pheromone': 'ClassC_CalcSense', 'Platelet': 'ClassA_Platelet', 'Prokineticin': 'ClassA_Peptide',
'Prolactin': 'ClassA_Peptide', 'Prostacyclin': 'ClassA_Prostanoid',
'Prostaglandin': 'ClassA_Prostanoid', 'Proteinase': 'ClassA_Peptide',
'Purinergic': 'ClassA_Nucleotide', 'PutPher': 'ClassC_PutPher', 'Secretin': 'ClassB_Secretin',
'Serotonin': 'ClassA_Amine', 'Somatostatin': 'ClassA_Peptide', 'SubstanceK': 'ClassA_Peptide',
'SubstanceP': 'ClassA_Peptide', 'Tachykinin': 'ClassA_Peptide', 'Taste': 'ClassC_Taste',
'Thrombin': 'ClassA_Peptide', 'Thyro': 'ClassA_Thyro', 'Thyrotropin': 'ClassA_Hormone',
'Traceamine': 'ClassA_Amine', 'UrotensinII': 'ClassA_Peptide', 'Vasoactive': 'ClassB_Vasocactive',
'Vasopressin': 'ClassA_Peptide', 'Vasotocin': 'ClassA_Peptide', 'cAMP': 'ClassE_cAMP'}
idx_to_GPCR_name = {0: 'ClassA_Nucleotide_Adenosine', 1: 'ClassA_Adrenergic_Adrenergic',
2: 'ClassA_Peptide_Adrenocorticotropic', 3: 'ClassA_Peptide_Adrenomedullin',
4: 'ClassA_Amine_Adrenoreceptor', 5: 'ClassA_Peptide_Allatostatin', 6: 'ClassD_Pheromone_AlphaFac',
7: 'ClassA_Anaphylatoxin_Anaphylatoxin', 8: 'ClassA_Peptide_Angiotensin', 9: 'ClassA_Leuko_BLT2',
10: 'ClassC_BOSS_BOSS', 11: 'ClassA_Peptide_Bombesin', 12: 'ClassA_Peptide_Bradykinin',
13: 'ClassB_BrainSpec_BrainSpec', 14: 'ClassA_Peptide_C5A', 15: 'ClassB_Cadherin_Cadherin',
16: 'ClassC_CalcSense_CalcLike', 17: 'ClassB_Calcitonin_Calcitonin',
18: 'ClassA_Cannabinoid_Cannabinoid', 19: 'ClassA_Peptide_Chemokine',
20: 'ClassA_Peptide_Cholecystokinin', 21: 'ClassB_Corticotropin_Corticotropin',
22: 'ClassA_Amine_Dopamine', 23: 'ClassA_Peptide_Duffy', 24: 'ClassB_EMR1_EMR1',
25: 'ClassA_Peptide_Endothelin', 26: 'ClassC_CalcSense_ExtraCalc',
27: 'ClassA_Hormone_FollicleStim', 28: 'ClassC_GABA_GABA', 29: 'ClassA_GRHR_GRHR',
30: 'ClassA_Peptide_Galanin', 31: 'ClassB_Gastric_Gastric', 32: 'ClassB_Glucagon_Glucagon',
33: 'ClassC_GlutaMeta_GlutaMeta', 34: 'ClassA_Hormone_Gonadotrophin', 35: 'ClassA_Thyro_Growth',
36: 'ClassB_GrowthHorm_GrowthHorm', 37: 'ClassA_Amine_Histamine',
38: 'ClassA_Interleukin8_Interleukin8', 39: 'ClassA_Peptide_Kiss1',
40: 'ClassB_Latrophilin_Latrophilin', 41: 'ClassA_Lyso_LysoEdg2', 42: 'ClassA_Peptide_MelaninConc',
43: 'ClassA_Peptide_Melanocortin', 44: 'ClassA_Peptide_Melanocyte', 45: 'ClassA_Melaton_Melaton',
46: 'ClassB_Methuselah_Methuselah', 47: 'ClassA_Amine_MuscAcetyl',
48: 'ClassA_Amine_Muscarinicacetylcholine', 49: 'ClassA_Peptide_Neuromedin',
50: 'ClassA_Peptide_NeuromedinB-U', 51: 'ClassA_Peptide_Neuropeptide',
52: 'ClassA_Peptide_NeuropeptideFF', 53: 'ClassA_Peptide_Neurotensin',
54: 'ClassA_Amine_Octopamine', 55: 'ClassA_Olfactory_Olfactory', 56: 'ClassA_Peptide_Opoid',
57: 'ClassA_Peptide_Orexin', 58: 'ClassA_Peptide_Oxytocin', 59: 'ClassB_PACAP_PACAP',
60: 'ClassB_Parathyroid_Parathyroid', 61: 'ClassC_CalcSense_Pheromone',
62: 'ClassA_Platelet_Platelet', 63: 'ClassA_Peptide_Prokineticin', 64: 'ClassA_Peptide_Prolactin',
65: 'ClassA_Prostanoid_Prostacyclin', 66: 'ClassA_Prostanoid_Prostaglandin',
67: 'ClassA_Peptide_Proteinase', 68: 'ClassA_Nucleotide_Purinergic', 69: 'ClassC_PutPher_PutPher',
70: 'ClassB_Secretin_Secretin', 71: 'ClassA_Amine_Serotonin', 72: 'ClassA_Peptide_Somatostatin',
73: 'ClassA_Peptide_SubstanceK', 74: 'ClassA_Peptide_SubstanceP', 75: 'ClassA_Peptide_Tachykinin',
76: 'ClassC_Taste_Taste', 77: 'ClassA_Peptide_Thrombin', 78: 'ClassA_Thyro_Thyro',
79: 'ClassA_Hormone_Thyrotropin', 80: 'ClassA_Amine_Traceamine', 81: 'ClassA_Peptide_UrotensinII',
82: 'ClassB_Vasocactive_Vasoactive', 83: 'ClassA_Peptide_Vasopressin',
84: 'ClassA_Peptide_Vasotocin', 85: 'ClassE_cAMP_cAMP'}