forked from llvm-mirror/llvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshuffle_fuzz.py
executable file
·255 lines (227 loc) · 9.82 KB
/
shuffle_fuzz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#!/usr/bin/env python
"""A shuffle vector fuzz tester.
This is a python program to fuzz test the LLVM shufflevector instruction. It
generates a function with a random sequnece of shufflevectors, maintaining the
element mapping accumulated across the function. It then generates a main
function which calls it with a different value in each element and checks that
the result matches the expected mapping.
Take the output IR printed to stdout, compile it to an executable using whatever
set of transforms you want to test, and run the program. If it crashes, it found
a bug.
"""
import argparse
import itertools
import random
import sys
import uuid
def main():
element_types=['i8', 'i16', 'i32', 'i64', 'f32', 'f64']
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('-v', '--verbose', action='store_true',
help='Show verbose output')
parser.add_argument('--seed', default=str(uuid.uuid4()),
help='A string used to seed the RNG')
parser.add_argument('--max-shuffle-height', type=int, default=16,
help='Specify a fixed height of shuffle tree to test')
parser.add_argument('--no-blends', dest='blends', action='store_false',
help='Include blends of two input vectors')
parser.add_argument('--fixed-bit-width', type=int, choices=[128, 256],
help='Specify a fixed bit width of vector to test')
parser.add_argument('--fixed-element-type', choices=element_types,
help='Specify a fixed element type to test')
parser.add_argument('--triple',
help='Specify a triple string to include in the IR')
args = parser.parse_args()
random.seed(args.seed)
if args.fixed_element_type is not None:
element_types=[args.fixed_element_type]
if args.fixed_bit_width is not None:
if args.fixed_bit_width == 128:
width_map={'i64': 2, 'i32': 4, 'i16': 8, 'i8': 16, 'f64': 2, 'f32': 4}
(width, element_type) = random.choice(
[(width_map[t], t) for t in element_types])
elif args.fixed_bit_width == 256:
width_map={'i64': 4, 'i32': 8, 'i16': 16, 'i8': 32, 'f64': 4, 'f32': 8}
(width, element_type) = random.choice(
[(width_map[t], t) for t in element_types])
else:
sys.exit(1) # Checked above by argument parsing.
else:
width = random.choice([2, 4, 8, 16, 32, 64])
element_type = random.choice(element_types)
element_modulus = {
'i8': 1 << 8, 'i16': 1 << 16, 'i32': 1 << 32, 'i64': 1 << 64,
'f32': 1 << 32, 'f64': 1 << 64}[element_type]
shuffle_range = (2 * width) if args.blends else width
# Because undef (-1) saturates and is indistinguishable when testing the
# correctness of a shuffle, we want to bias our fuzz toward having a decent
# mixture of non-undef lanes in the end. With a deep shuffle tree, the
# probabilies aren't good so we need to bias things. The math here is that if
# we uniformly select between -1 and the other inputs, each element of the
# result will have the following probability of being undef:
#
# 1 - (shuffle_range/(shuffle_range+1))^max_shuffle_height
#
# More generally, for any probability P of selecting a defined element in
# a single shuffle, the end result is:
#
# 1 - P^max_shuffle_height
#
# The power of the shuffle height is the real problem, as we want:
#
# 1 - shuffle_range/(shuffle_range+1)
#
# So we bias the selection of undef at any given node based on the tree
# height. Below, let 'A' be 'len(shuffle_range)', 'C' be 'max_shuffle_height',
# and 'B' be the bias we use to compensate for
# C '((A+1)*A^(1/C))/(A*(A+1)^(1/C))':
#
# 1 - (B * A)/(A + 1)^C = 1 - A/(A + 1)
#
# So at each node we use:
#
# 1 - (B * A)/(A + 1)
# = 1 - ((A + 1) * A * A^(1/C))/(A * (A + 1) * (A + 1)^(1/C))
# = 1 - ((A + 1) * A^((C + 1)/C))/(A * (A + 1)^((C + 1)/C))
#
# This is the formula we use to select undef lanes in the shuffle.
A = float(shuffle_range)
C = float(args.max_shuffle_height)
undef_prob = 1.0 - (((A + 1.0) * pow(A, (C + 1.0)/C)) /
(A * pow(A + 1.0, (C + 1.0)/C)))
shuffle_tree = [[[-1 if random.random() <= undef_prob
else random.choice(range(shuffle_range))
for _ in itertools.repeat(None, width)]
for _ in itertools.repeat(None, args.max_shuffle_height - i)]
for i in xrange(args.max_shuffle_height)]
if args.verbose:
# Print out the shuffle sequence in a compact form.
print >>sys.stderr, ('Testing shuffle sequence "%s" (v%d%s):' %
(args.seed, width, element_type))
for i, shuffles in enumerate(shuffle_tree):
print >>sys.stderr, ' tree level %d:' % (i,)
for j, s in enumerate(shuffles):
print >>sys.stderr, ' shuffle %d: %s' % (j, s)
print >>sys.stderr, ''
# Symbolically evaluate the shuffle tree.
inputs = [[int(j % element_modulus)
for j in xrange(i * width + 1, (i + 1) * width + 1)]
for i in xrange(args.max_shuffle_height + 1)]
results = inputs
for shuffles in shuffle_tree:
results = [[((results[i] if j < width else results[i + 1])[j % width]
if j != -1 else -1)
for j in s]
for i, s in enumerate(shuffles)]
if len(results) != 1:
print >>sys.stderr, 'ERROR: Bad results: %s' % (results,)
sys.exit(1)
result = results[0]
if args.verbose:
print >>sys.stderr, 'Which transforms:'
print >>sys.stderr, ' from: %s' % (inputs,)
print >>sys.stderr, ' into: %s' % (result,)
print >>sys.stderr, ''
# The IR uses silly names for floating point types. We also need a same-size
# integer type.
integral_element_type = element_type
if element_type == 'f32':
integral_element_type = 'i32'
element_type = 'float'
elif element_type == 'f64':
integral_element_type = 'i64'
element_type = 'double'
# Now we need to generate IR for the shuffle function.
subst = {'N': width, 'T': element_type, 'IT': integral_element_type}
print """
define internal fastcc <%(N)d x %(T)s> @test(%(arguments)s) noinline nounwind {
entry:""" % dict(subst,
arguments=', '.join(
['<%(N)d x %(T)s> %%s.0.%(i)d' % dict(subst, i=i)
for i in xrange(args.max_shuffle_height + 1)]))
for i, shuffles in enumerate(shuffle_tree):
for j, s in enumerate(shuffles):
print """
%%s.%(next_i)d.%(j)d = shufflevector <%(N)d x %(T)s> %%s.%(i)d.%(j)d, <%(N)d x %(T)s> %%s.%(i)d.%(next_j)d, <%(N)d x i32> <%(S)s>
""".strip('\n') % dict(subst, i=i, next_i=i + 1, j=j, next_j=j + 1,
S=', '.join(['i32 ' + (str(si) if si != -1 else 'undef')
for si in s]))
print """
ret <%(N)d x %(T)s> %%s.%(i)d.0
}
""" % dict(subst, i=len(shuffle_tree))
# Generate some string constants that we can use to report errors.
for i, r in enumerate(result):
if r != -1:
s = ('FAIL(%(seed)s): lane %(lane)d, expected %(result)d, found %%d\n\\0A' %
{'seed': args.seed, 'lane': i, 'result': r})
s += ''.join(['\\00' for _ in itertools.repeat(None, 128 - len(s) + 2)])
print """
@error.%(i)d = private unnamed_addr global [128 x i8] c"%(s)s"
""".strip() % {'i': i, 's': s}
# Define a wrapper function which is marked 'optnone' to prevent
# interprocedural optimizations from deleting the test.
print """
define internal fastcc <%(N)d x %(T)s> @test_wrapper(%(arguments)s) optnone noinline {
%%result = call fastcc <%(N)d x %(T)s> @test(%(arguments)s)
ret <%(N)d x %(T)s> %%result
}
""" % dict(subst,
arguments=', '.join(['<%(N)d x %(T)s> %%s.%(i)d' % dict(subst, i=i)
for i in xrange(args.max_shuffle_height + 1)]))
# Finally, generate a main function which will trap if any lanes are mapped
# incorrectly (in an observable way).
print """
define i32 @main() {
entry:
; Create a scratch space to print error messages.
%%str = alloca [128 x i8]
%%str.ptr = getelementptr inbounds [128 x i8], [128 x i8]* %%str, i32 0, i32 0
; Build the input vector and call the test function.
%%v = call fastcc <%(N)d x %(T)s> @test_wrapper(%(inputs)s)
; We need to cast this back to an integer type vector to easily check the
; result.
%%v.cast = bitcast <%(N)d x %(T)s> %%v to <%(N)d x %(IT)s>
br label %%test.0
""" % dict(subst,
inputs=', '.join(
[('<%(N)d x %(T)s> bitcast '
'(<%(N)d x %(IT)s> <%(input)s> to <%(N)d x %(T)s>)' %
dict(subst, input=', '.join(['%(IT)s %(i)d' % dict(subst, i=i)
for i in input])))
for input in inputs]))
# Test that each non-undef result lane contains the expected value.
for i, r in enumerate(result):
if r == -1:
print """
test.%(i)d:
; Skip this lane, its value is undef.
br label %%test.%(next_i)d
""" % dict(subst, i=i, next_i=i + 1)
else:
print """
test.%(i)d:
%%v.%(i)d = extractelement <%(N)d x %(IT)s> %%v.cast, i32 %(i)d
%%cmp.%(i)d = icmp ne %(IT)s %%v.%(i)d, %(r)d
br i1 %%cmp.%(i)d, label %%die.%(i)d, label %%test.%(next_i)d
die.%(i)d:
; Capture the actual value and print an error message.
%%tmp.%(i)d = zext %(IT)s %%v.%(i)d to i2048
%%bad.%(i)d = trunc i2048 %%tmp.%(i)d to i32
call i32 (i8*, i8*, ...) @sprintf(i8* %%str.ptr, i8* getelementptr inbounds ([128 x i8], [128 x i8]* @error.%(i)d, i32 0, i32 0), i32 %%bad.%(i)d)
%%length.%(i)d = call i32 @strlen(i8* %%str.ptr)
call i32 @write(i32 2, i8* %%str.ptr, i32 %%length.%(i)d)
call void @llvm.trap()
unreachable
""" % dict(subst, i=i, next_i=i + 1, r=r)
print """
test.%d:
ret i32 0
}
declare i32 @strlen(i8*)
declare i32 @write(i32, i8*, i32)
declare i32 @sprintf(i8*, i8*, ...)
declare void @llvm.trap() noreturn nounwind
""" % (len(result),)
if __name__ == '__main__':
main()