forked from PeterWang512/CNNDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_dir.py
91 lines (74 loc) · 3.25 KB
/
demo_dir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import argparse
import os
import csv
import torch
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.utils.data
import numpy as np
from sklearn.metrics import average_precision_score, precision_recall_curve, accuracy_score
from networks.resnet import resnet50
from tqdm import tqdm
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-d','--dir', nargs='+', type=str, default='examples/realfakedir')
parser.add_argument('-m','--model_path', type=str, default='weights/blur_jpg_prob0.5.pth')
parser.add_argument('-b','--batch_size', type=int, default=32)
parser.add_argument('-j','--workers', type=int, default=4, help='number of workers')
parser.add_argument('-c','--crop', type=int, default=None, help='by default, do not crop. specify crop size')
parser.add_argument('--use_cpu', action='store_true', help='uses gpu by default, turn on to use cpu')
parser.add_argument('--size_only', action='store_true', help='only look at sizes of images in dataset')
opt = parser.parse_args()
# Load model
if(not opt.size_only):
model = resnet50(num_classes=1)
if(opt.model_path is not None):
state_dict = torch.load(opt.model_path, map_location='cpu')
model.load_state_dict(state_dict['model'])
model.eval()
if(not opt.use_cpu):
model.cuda()
# Transform
trans_init = []
if(opt.crop is not None):
trans_init = [transforms.CenterCrop(opt.crop),]
print('Cropping to [%i]'%opt.crop)
else:
print('Not cropping')
trans = transforms.Compose(trans_init + [
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Dataset loader
if(type(opt.dir)==str):
opt.dir = [opt.dir,]
print('Loading [%i] datasets'%len(opt.dir))
data_loaders = []
for dir in opt.dir:
dataset = datasets.ImageFolder(dir, transform=trans)
data_loaders+=[torch.utils.data.DataLoader(dataset,
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.workers),]
y_true, y_pred = [], []
Hs, Ws = [], []
with torch.no_grad():
for data_loader in data_loaders:
for data, label in tqdm(data_loader):
# for data, label in data_loader:
Hs.append(data.shape[2])
Ws.append(data.shape[3])
y_true.extend(label.flatten().tolist())
if(not opt.size_only):
if(not opt.use_cpu):
data = data.cuda()
y_pred.extend(model(data).sigmoid().flatten().tolist())
Hs, Ws = np.array(Hs), np.array(Ws)
y_true, y_pred = np.array(y_true), np.array(y_pred)
print('Average sizes: [{:2.2f}+/-{:2.2f}] x [{:2.2f}+/-{:2.2f}] = [{:2.2f}+/-{:2.2f} Mpix]'.format(np.mean(Hs), np.std(Hs), np.mean(Ws), np.std(Ws), np.mean(Hs*Ws)/1e6, np.std(Hs*Ws)/1e6))
print('Num reals: {}, Num fakes: {}'.format(np.sum(1-y_true), np.sum(y_true)))
if(not opt.size_only):
r_acc = accuracy_score(y_true[y_true==0], y_pred[y_true==0] > 0.5)
f_acc = accuracy_score(y_true[y_true==1], y_pred[y_true==1] > 0.5)
acc = accuracy_score(y_true, y_pred > 0.5)
ap = average_precision_score(y_true, y_pred)
print('AP: {:2.2f}, Acc: {:2.2f}, Acc (real): {:2.2f}, Acc (fake): {:2.2f}'.format(ap*100., acc*100., r_acc*100., f_acc*100.))