-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInvestigateATPPerMolecule.m
412 lines (334 loc) · 15.6 KB
/
InvestigateATPPerMolecule.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
%Generates data for table 1 and associated supplementary figures.
cd C:/Work/MatlabCode/projects/TMEModeling/TMEModeling
%load the models
load('data/ltModel.mat');
substrateNames = { ...
'lactate', ...
'aspartate','glutamine','glycine','proline','serine','threonine',...
'alanine','arginine','asparagine','cysteine','glutamate','histidine', ...
'isoleucine','leucine','lysine','methionine','phenylalanine','tryptophan','tyrosine','valine'
};
substrateRxns = { ...
'MAR09135_REV', ... %lactate
'MAR09070_REV', ... %aspartate
'MAR09063_REV', ... %glutamine
'MAR09067_REV', ... %glycine
'MAR09068_REV', ... %proline
'MAR09069_REV', ... %serine
'MAR09044_REV', ... %threonine
'MAR09061_REV', ... %alanine
'MAR09066_REV', ... %arginine
'MAR09062_REV', ... %asparagine
'MAR09065_REV', ... %cysteine
'MAR09071_REV', ... %glutamate
'MAR09038_REV', ... %histidine
'MAR09039_REV', ... %isoleucine
'MAR09040_REV', ... %leucine
'MAR09041_REV', ... %lysine
'MAR09042_REV', ... %methionine
'MAR09043_REV', ... %phenylalanine
'MAR09045_REV', ... %tryptophan
'MAR09064_REV', ... %tyrosine
'MAR09046_REV' ... %valine
};
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% First look at ATP production per substrate in hypoxia without enzyme constraints
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mBase = ltModel;
%optimize for ATP, test to send in different substrates
%first close all metabolite uptake reactions
exchRxns = getExchangeRxns(mBase, 'in');
exchRxnsInd = ismember(mBase.rxns, exchRxns);
mBase.ub(exchRxnsInd) = 0;
%now, optimize for ATP, when supplying lactate and glutamine, with limited oxygen and see what it prefers!
%I reason lactate is similar to glucose, except that we don't get any extra ATP from glycolysis,
%but redox should be similar.
mBase.lb(strcmp(ltModel.rxns,'MAR03964')) = 0;%remove NGAM
mBase.ub(length(mBase.ub)) = Inf; %disable enzyme constraints
mBase.ub(strcmp(mBase.rxns, 'MAR09047_REV')) = Inf;%H2O
mBase.ub(strcmp(mBase.rxns, 'MAR09072_REV')) = Inf;%Pi
mBase.ub(strcmp(mBase.rxns, 'MAR09079_REV')) = Inf;%H+
mBase.ub(strcmp(mBase.rxns, 'MAR09048_REV')) = 1;%oxygen
mBase.ub(strcmp(mBase.rxns, 'MAR09034_REV')) = 0;%glucose
mBase.c = double(strcmp(mBase.rxns,'MAR03964'));%set objective function to ATP consumption
nsub = length(substrateRxns);
resHypoxiaWithProdh = NaN(nsub,1);
resHypoxiaNoProdh = NaN(nsub,1);
resHypoxiaNoProdhNoO2 = NaN(nsub,1);
sols = cell(nsub,1);
for i = 1:nsub
disp(i)
m = mBase;
m.ub(strcmp(mBase.rxns, substrateRxns{i})) = 10;%the substrate
res = solveLP(m,1);
resHypoxiaWithProdh(i) = -res.f;%ATP prod
%now block the reversed prodh reaction
m.ub(strcmp(mBase.rxns, 'MAR03838')) = 0;%so, the prodh reaction is actually defined in reverse in the model
res = solveLP(m,1);
resHypoxiaNoProdh(i) = -res.f;%ATP prod
sols{i} = res;
m.ub(strcmp(mBase.rxns, 'MAR09048_REV')) = 0;%Now also block oxygen
res = solveLP(m,1);
resHypoxiaNoProdhNoO2(i) = -res.f;%ATP prod
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Then look at ATP production per substrate with enzyme constraints, but no hypoxia
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mBase = ltModel;
%optimize for ATP, test to send in different substrates
%first close all metabolite uptake reactions
exchRxns = getExchangeRxns(mBase, 'in');
exchRxnsInd = ismember(mBase.rxns, exchRxns);
mBase.ub(exchRxnsInd) = 0;
%now, optimize for ATP, when supplying lactate and glutamine, with limited oxygen and see what it prefers!
%I reason lactate is similar to glucose, except that we don't get any extra ATP from glycolysis,
%but redox should be similar.
mBase.lb(strcmp(ltModel.rxns,'MAR03964')) = 0;%remove NGAM
mBase.ub(length(mBase.ub)) = 0.001; %enable enzyme constraints at an appropriate level
mBase.ub(strcmp(mBase.rxns, 'MAR09047_REV')) = Inf;%H2O
mBase.ub(strcmp(mBase.rxns, 'MAR09072_REV')) = Inf;%Pi
mBase.ub(strcmp(mBase.rxns, 'MAR09079_REV')) = Inf;%H+
mBase.ub(strcmp(mBase.rxns, 'MAR09048_REV')) = Inf;%oxygen
mBase.ub(strcmp(mBase.rxns, 'MAR09034_REV')) = 0;%glucose
mBase.c = double(strcmp(mBase.rxns,'MAR03964'));%set objective function to ATP consumption
nsub = length(substrateRxns);
resEnzWithProdh = NaN(nsub,1);
resEnzNoProdh = NaN(nsub,1);
sols2 = cell(nsub,1);
for i = 1:nsub
disp(i)
m = mBase;
m.ub(strcmp(mBase.rxns, substrateRxns{i})) = 10;%the substrate
res = solveLP(m,1);
sols2{i} = res;
resEnzWithProdh(i) = -res.f;%ATP prod
%now block the reversed prodh reaction
m.ub(strcmp(mBase.rxns, 'MAR03838')) = 0;%so, the prodh reaction is actually defined in reverse in the model
res = solveLP(m,1);
resEnzNoProdh(i) = -res.f;%ATP prod
end
table(substrateNames.', resHypoxiaWithProdh, resHypoxiaNoProdh, resHypoxiaNoProdhNoO2, resEnzWithProdh, resEnzNoProdh)
%create a list with TCA cycle fluxes and percentage of flux through complex I vs complex III
s = struct();
s.TCACycleFluxesLowO2NoProdh = NaN(nsub,1);
s.ATPLowO2NoProdh = resHypoxiaNoProdh;
s.complexILowO2NoProdh = NaN(nsub,1);
s.complexIIILowO2NoProdh = NaN(nsub,1);
s.complexVLowO2NoProdh = NaN(nsub,1);
s.TCACycleFluxesEnzLim = NaN(nsub,1);
s.complexIEnzLim = NaN(nsub,1);
s.complexIIIEnzLim = NaN(nsub,1);
s.complexVEnzLim = NaN(nsub,1);
s.ATPEnzLim = resEnzNoProdh;
s.mets = substrateNames;
for i = 1:nsub
TCAGTP = sols{i}.x(strcmp(m.rxns, 'MAR04147_REV'));
TCAATP = sols{i}.x(strcmp(m.rxns, 'MAR04152'));
s.TCACycleFluxesLowO2NoProdh(i) = TCAGTP + TCAATP;
s.complexILowO2NoProdh(i) = sols{i}.x(strcmp(m.rxns, 'MAR06921'));
s.complexIIILowO2NoProdh(i) = sols{i}.x(strcmp(m.rxns, 'MAR06918'));
s.complexVLowO2NoProdh(i) = sols{i}.x(strcmp(m.rxns, 'MAR06916'));
TCAGTP = sols2{i}.x(strcmp(m.rxns, 'MAR04147_REV'));
TCAATP = sols2{i}.x(strcmp(m.rxns, 'MAR04152'));
s.TCACycleFluxesEnzLim(i) = TCAGTP + TCAATP;
s.complexIEnzLim(i) = sols2{i}.x(strcmp(m.rxns, 'MAR06921'));
s.complexIIIEnzLim(i) = sols2{i}.x(strcmp(m.rxns, 'MAR06918'));
s.complexVEnzLim(i) = sols2{i}.x(strcmp(m.rxns, 'MAR06916'));
end
save('data/D3_1.mat', 's')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Produce similar data for running complex II in reverse
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%4 cases:
%1. Hypoxia, citrate synthase in reverse closed
%2. Hypoxia, citrate synthase in reverse open
%3. Enzyme constraints, citrate synthase in reverse closed
%4. Enzyme constraints, citrate synthase in reverse open
%We shut down PRODH in reverse in this case
%add succinate export
rxnsToAdd = struct();
rxnsToAdd.rxns = {'succExp'};
rxnsToAdd.equations = {'succinate[c] => succinate[e]'};
rxnsToAdd.ub = Inf;
mBase = addRxns(ltModel, rxnsToAdd, 3);
%shut down PRODH in reverse
mBase.ub(strcmp(mBase.rxns, 'MAR03838')) = 0;%so, the prodh reaction is actually defined in reverse in the model
%optimize for ATP, test to send in different substrates
%first close all metabolite uptake reactions
exchRxns = getExchangeRxns(mBase, 'in');
exchRxnsInd = ismember(mBase.rxns, exchRxns);
mBase.ub(exchRxnsInd) = 0;
mBase.lb(strcmp(ltModel.rxns,'MAR03964')) = 0;%remove NGAM
mBase.ub(strcmp(mBase.rxns, 'MAR09047_REV')) = Inf;%H2O
mBase.ub(strcmp(mBase.rxns, 'MAR09072_REV')) = Inf;%Pi
mBase.ub(strcmp(mBase.rxns, 'MAR09079_REV')) = Inf;%H+
mBase.ub(strcmp(mBase.rxns, 'MAR09048_REV')) = 1;%oxygen
mBase.ub(strcmp(mBase.rxns, 'MAR09034_REV')) = 0;%glucose
mBase.c = double(strcmp(mBase.rxns,'MAR03964'));%set objective function to ATP consumption
baseModelSuccExp = mBase;
%First case 1 and 2:
%%%%%%%%%%%%%%%%%%%%
mBase2 = mBase;
mBase2.ub(strcmp(mBase.rxns, 'prot_pool_exchange')) = Inf; %disable enzyme constraints
nsub = length(substrateRxns);
resCIIHypoxiaNoCit = NaN(nsub,1);
resCIIHypoxia = NaN(nsub,1);
sols_c1 = cell(nsub,1);
sols_c2 = cell(nsub,1);
for i = 1:nsub
disp(i)
%Case 1 - block citrate synthase in reverse
m = mBase2;
m.ub(strcmp(mBase.rxns, substrateRxns{i})) = 10;%the substrate
m.ub(strcmp(mBase.rxns, 'MAR04145')) = 0;%citrate synthase in reverse - the reaction is defined backwards
sols_c1{i} = solveLP(m,1);
resCIIHypoxiaNoCit(i) = -sols_c1{i}.f;%ATP prod
%Case 2 - open citrate synthase in reverse
m.ub(strcmp(mBase.rxns, 'MAR04145')) = Inf;%citrate synthase in reverse - the reaction is defined backwards
sols_c2{i} = solveLP(m,1);
resCIIHypoxia(i) = -sols_c2{i}.f;%ATP prod
end
%Now case 3 and 4, i.e., enzyme constraints:
%%%%%%%%%%%%%%%%%%%%
%now, optimize for ATP, when supplying lactate and glutamine, with limited oxygen and see what it prefers!
%I reason lactate is similar to glucose, except that we don't get any extra ATP from glycolysis,
%but redox should be similar.
mBase2 = mBase;
mBase2.ub(strcmp(mBase.rxns, 'prot_pool_exchange')) = 0.001; %enable enzyme constraints at an appropriate level
mBase2.ub(strcmp(mBase.rxns, 'MAR09048_REV')) = Inf;%oxygen - no hypoxia here
nsub = length(substrateRxns);
resCIIEnzNoCit = NaN(nsub,1);
resCIIEnz = NaN(nsub,1);
sols_c3 = cell(nsub,1);
sols_c4 = cell(nsub,1);
for i = 1:nsub
disp(i)
m = mBase2;
%Case 3 - block citrate synthase in reverse
m.ub(strcmp(mBase.rxns, substrateRxns{i})) = 10;%the substrate
m.ub(strcmp(mBase.rxns, 'MAR04145')) = 0;%citrate synthase in reverse - the reaction is defined backwards
sols_c3{i} = solveLP(m,1);
resCIIEnzNoCit(i) = -sols_c3{i}.f;%ATP prod
%Case 4 - open citrate synthase in reverse
m.ub(strcmp(mBase.rxns, 'MAR04145')) = Inf;%citrate synthase in reverse - the reaction is defined backwards
sols_c4{i} = solveLP(m,1);
resCIIEnz(i) = -sols_c4{i}.f;%ATP prod
end
table(substrateNames.', resCIIHypoxiaNoCit, resCIIHypoxia, resCIIEnzNoCit, resCIIEnz)
resCIIHypoxiaNoCit - resCIIHypoxia %they are the same
resCIIEnzNoCit - resCIIEnz %they are the same
%Check what pathways are chosen for lactate
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{1}, 'L-lactate', true, 10^-4);
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{1}, 'pyruvate', true, 10^-4); %60% goes to OAA at the cost of ATP
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{1}, 'OAA', true, 10^-4); %to malate
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{1}, 'malate', true, 10^-4); %to fumarate
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{1}, 'fumarate', true, 10^-4); %to succinate, i.e., complex II in reverse 6
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{1}, 'succinate', true, 10^-4); %succinate exported
%So, we lose 1 ATP and gain 1.33 ATP since complex I pumps 4 protons, given that we have enough NADH.
%The same for glutamine
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{3}, 'glutamine', true, 10^-4); %imported and converted to glutamate
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{3}, 'glutamate', true, 10^-4); %10% -> AKG, 45% -> L-glutamate 5-semialdehyde[m], 45% används med L-glutamate 5-semialdehyde[m] för att bilda AKG + ornithine
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{3}, 'AKG', true, 10^-4); %goes to succinyl-CoA
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{3}, 'succinyl-CoA', true, 10^-4); %goes to succinate
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{3}, 'succinate', true, 10^-4); %succinate is exported - this is 55% of the glutamine
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{3}, 'ornithine', true, 10^-4); %is eventually exported
listMetRxnsWithFluxes(baseModelSuccExp, sols_c1{3}, 'citrulline', true, 10^-4); %is eventually exported
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Now, investigate the PRODH and complex II in reverse cases with the diffusion model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%We look at these cases:
%1. None of them on
%2. PRODH in reverse on
%3. Succinate export on, also resulting in that complex II can be run in reverse. Citrate synthase in reverse is blocked.
%4. Succinate export on, also resulting in that complex II can be run in reverse. Citrate synthase in reverse is open.
%5. All advantageous reactions are open.
%add succinate export
rxnsToAdd = struct();
rxnsToAdd.rxns = {'succExp'};
rxnsToAdd.equations = {'succinate[c] => succinate[e]'};
rxnsToAdd.ub = Inf;
mBase = addRxns(ltModel, rxnsToAdd, 3);
%Setup the diffusion model
%%%%%%%%%%%%%%%%%%%%%%%%%%
bloodData = prepBloodData();
%get the metabolites for each exchange reaction
[~, exchRxnIndAll] = getExchangeRxns(mBase, 'in');
exchRxnMetsAll = cell(length(exchRxnIndAll), 1);
for i = 1:length(exchRxnMetsAll)
exchRxnMetsAll{i} = m.metNames{mBase.S(:, exchRxnIndAll(i)) == 1};
end
%filter mets and exchange rxns that does not exist in the blood data (it is meaningless to work with them)
%filters 5 metabolites + prot_pool
sel = ismember(strcat(exchRxnMetsAll,'[e]'), bloodData.totMets);
exchRxnMetsAll(~sel)%H2O, Pi, sulfate, Fe2+, hypoxanthine, prot_pool
exchRxnMets = exchRxnMetsAll(sel);
exchRxnInd = exchRxnIndAll(sel);
%Create mapping between the blood mets and the exch mets:
mappingExchMets = NaN(length(exchRxnMets),1);
for i = 1:length(mappingExchMets)
ind = find(strcmp(strcat(exchRxnMets(i),'[e]'), bloodData.totMets));
if length(ind) == 1
mappingExchMets(i) = ind;
end
end
%test
tmp = strcat(exchRxnMets(1:(length(exchRxnMets)-1)),'[e]');
all(strcmp(tmp, bloodData.totMets(mappingExchMets(1:(length(exchRxnMets)-1)))))%ok, all equal
%The "standard" range
a = (0.000001:0.000001:0.0001);
%Set NGAM to zero
mBase.lb(strcmp(mBase.rxns,'MAR03964')) = 0;%no NGAM
%%%%%%%%%%%%%%%%%%
% case 1 - nothing on
%%%%%%%%%%%%%%%%%%
m = mBase;
%shut down PRODH in reverse
m.ub(strcmp(mBase.rxns, 'MAR03838')) = 0;%so, the prodh reaction is actually defined in reverse in the model
%shut down succinate export (which stops running complex I in reverse)
m.ub(strcmp(mBase.rxns, 'succExp')) = 0;
tic
D5_6_1 = runASimulation(m, a, bloodData, 0, false, NaN, 'MAR03964');
toc
save('data/D5_6_1.mat', 'D5_6_1')
%%%%%%%%%%%%%%%%%%
% case 2 - PRODH in reverse on
%%%%%%%%%%%%%%%%%%
m = mBase;
%shut down succinate export (which stops running complex I in reverse)
m.ub(strcmp(mBase.rxns, 'succExp')) = 0;
tic
D5_6_2 = runASimulation(m, a, bloodData, 0, false, NaN, 'MAR03964');
toc
save('data/D5_6_2.mat', 'D5_6_2')
%%%%%%%%%%%%%%%%%%
% case 3 - Succinate export on, also resulting in that complex II can be run in reverse. Citrate synthase in reverse is blocked.
% This is not used in the final figures.
%%%%%%%%%%%%%%%%%%
m = mBase;
%shut down PRODH in reverse
m.ub(strcmp(mBase.rxns, 'MAR03838')) = 0;%so, the prodh reaction is actually defined in reverse in the model
%shut down citrate synthase in reverse
m.ub(strcmp(mBase.rxns, 'MAR04145')) = 0;%citrate synthase in reverse - the reaction is defined backwards
tic
D5_6_3 = runASimulation(m, a, bloodData, 0, false, NaN, 'MAR03964');
toc
save('data/D5_6_3.mat', 'D5_6_3')
%%%%%%%%%%%%%%%%%%
% case 4 - Succinate export on, also resulting in that complex II can be run in reverse. Citrate synthase in reverse is open.
%%%%%%%%%%%%%%%%%%
m = mBase;
%shut down PRODH in reverse
m.ub(strcmp(mBase.rxns, 'MAR03838')) = 0;%so, the prodh reaction is actually defined in reverse in the model
tic
D5_6_4 = runASimulation(m, a, bloodData, 0, false, NaN, 'MAR03964');
toc
save('data/D5_6_4.mat', 'D5_6_4')
listMetRxnsWithFluxes(baseModelSuccExp, D5_6_4.resultSolutions{60}, 'succinate', false, 10^-4); %succinate is exported - this is 55% of the glutamine
%%%%%%%%%%%%%%%%%%
% case 5 - All open
%%%%%%%%%%%%%%%%%%
m = mBase;
tic
D5_6_5 = runASimulation(m, a, bloodData, 0, false, NaN, 'MAR03964');
toc
save('data/D5_6_5.mat', 'D5_6_5')