-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathtest_polars.py
88 lines (79 loc) · 3.57 KB
/
test_polars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
from numpy.testing import assert_array_equal
import polars as pl
import talib
from talib import abstract
def test_MOM():
values = pl.Series([90.0,88.0,89.0])
result = talib.MOM(values, timeperiod=1)
assert isinstance(result, pl.Series)
assert_array_equal(result.to_numpy(), [np.nan, -2, 1])
result = talib.MOM(values, timeperiod=2)
assert isinstance(result, pl.Series)
assert_array_equal(result.to_numpy(), [np.nan, np.nan, -1])
result = talib.MOM(values, timeperiod=3)
assert isinstance(result, pl.Series)
assert_array_equal(result.to_numpy(), [np.nan, np.nan, np.nan])
result = talib.MOM(values, timeperiod=4)
assert isinstance(result, pl.Series)
assert_array_equal(result.to_numpy(), [np.nan, np.nan, np.nan])
def test_MAVP():
a = pl.Series([1,5,3,4,7,3,8,1,4,6], dtype=pl.Float64)
b = pl.Series([2,4,2,4,2,4,2,4,2,4], dtype=pl.Float64)
result = talib.MAVP(a, b, minperiod=2, maxperiod=4)
assert isinstance(result, pl.Series)
assert_array_equal(result.to_numpy(), [np.nan,np.nan,np.nan,3.25,5.5,4.25,5.5,4.75,2.5,4.75])
sma2 = talib.SMA(a, 2)
assert isinstance(sma2, pl.Series)
assert_array_equal(result.to_numpy()[4::2], sma2.to_numpy()[4::2])
sma4 = talib.SMA(a, 4)
assert isinstance(sma4, pl.Series)
assert_array_equal(result.to_numpy()[3::2], sma4.to_numpy()[3::2])
result = talib.MAVP(a, b, minperiod=2, maxperiod=3)
assert isinstance(result, pl.Series)
assert_array_equal(result.to_numpy(), [np.nan,np.nan,4,4,5.5,4.666666666666667,5.5,4,2.5,3.6666666666666665])
sma3 = talib.SMA(a, 3)
assert isinstance(sma3, pl.Series)
assert_array_equal(result.to_numpy()[2::2], sma2.to_numpy()[2::2])
assert_array_equal(result.to_numpy()[3::2], sma3.to_numpy()[3::2])
def test_TEVA():
size = 50
df = pl.DataFrame(
{
"open": np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
"high": np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
"low": np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
"close": np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
"volume": np.random.uniform(low=0.0, high=100.0, size=size).astype("float32")
}
)
tema1 = abstract.TEMA(df, timeperiod=9)
assert isinstance(tema1, pl.Series)
assert len(tema1) == 50
inputs = abstract.TEMA.get_input_arrays()
assert inputs.columns == df.columns
for column in df.columns:
assert_array_equal(inputs[column].to_numpy(), df[column].to_numpy())
tema2 = abstract.TEMA(df, timeperiod=9)
assert isinstance(tema2, pl.Series)
assert len(tema2) == 50
inputs = abstract.TEMA.get_input_arrays()
assert inputs.columns == df.columns
for column in df.columns:
assert_array_equal(inputs[column].to_numpy(), df[column].to_numpy())
assert_array_equal(tema1.to_numpy(), tema2.to_numpy())
def test_AVR():
size = 50
df = pl.DataFrame(
{
"open": np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
"high": np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
"low": np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
"close": np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
"volume": np.random.uniform(low=0.0, high=100.0, size=size).astype("float32")
}
)
high = df['high']
low = df['low']
close = df['close']
atr = talib.ATR(high, low, close, timeperiod=14)