forked from ArduPilot/ardupilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tailsitter.cpp
338 lines (307 loc) · 13.4 KB
/
tailsitter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
control code for tailsitters. Enabled by setting Q_FRAME_CLASS=10
or by setting Q_TAILSIT_MOTMX nonzero and Q_FRAME_CLASS and Q_FRAME_TYPE
to a configuration supported by AP_MotorsMatrix
*/
#include "Plane.h"
/*
return true when flying a tailsitter
*/
bool QuadPlane::is_tailsitter(void) const
{
return available()
&& ((frame_class == AP_Motors::MOTOR_FRAME_TAILSITTER) || (tailsitter.motor_mask != 0))
&& (tilt.tilt_type != TILT_TYPE_BICOPTER);
}
/*
check if we are flying as a tailsitter
*/
bool QuadPlane::tailsitter_active(void)
{
if (!is_tailsitter()) {
return false;
}
if (in_vtol_mode()) {
return true;
}
// check if we are in ANGLE_WAIT fixed wing transition
if (transition_state == TRANSITION_ANGLE_WAIT_FW) {
return true;
}
return false;
}
/*
run output for tailsitters
*/
void QuadPlane::tailsitter_output(void)
{
if (!is_tailsitter()) {
return;
}
float tilt_left = 0.0f;
float tilt_right = 0.0f;
uint16_t mask = tailsitter.motor_mask;
// handle forward flight modes and transition to VTOL modes
if (!tailsitter_active() || in_tailsitter_vtol_transition()) {
// in forward flight: set motor tilt servos and throttles using FW controller
if (tailsitter.vectored_forward_gain > 0) {
// thrust vectoring in fixed wing flight
float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron);
float elevator = SRV_Channels::get_output_scaled(SRV_Channel::k_elevator);
tilt_left = (elevator + aileron) * tailsitter.vectored_forward_gain;
tilt_right = (elevator - aileron) * tailsitter.vectored_forward_gain;
}
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt_left);
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt_right);
// get FW controller throttle demand and mask of motors enabled during forward flight
float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
if (hal.util->get_soft_armed()) {
if (in_tailsitter_vtol_transition() && !throttle_wait && is_flying()) {
/*
during transitions to vtol mode set the throttle to
hover thrust, center the rudder and set the altitude controller
integrator to the same throttle level
*/
throttle = motors->get_throttle_hover() * 100;
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0);
pos_control->get_accel_z_pid().set_integrator(throttle*10);
if (mask == 0) {
// override AP_MotorsTailsitter throttles during back transition
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle);
}
}
if (mask != 0) {
// set AP_MotorsMatrix throttles enabled for forward flight
motors->output_motor_mask(throttle * 0.01f, mask, plane.rudder_dt);
}
}
return;
}
// handle VTOL modes
// the MultiCopter rate controller has already been run in an earlier call
// to motors_output() from quadplane.update()
motors_output(false);
plane.pitchController.reset_I();
plane.rollController.reset_I();
// pull in copter control outputs
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, (motors->get_yaw())*-SERVO_MAX);
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, (motors->get_pitch())*SERVO_MAX);
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, (motors->get_roll())*SERVO_MAX);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, (motors->get_throttle()) * 100);
if (hal.util->get_soft_armed()) {
// scale surfaces for throttle
tailsitter_speed_scaling();
}
if (tailsitter.vectored_hover_gain > 0) {
// thrust vectoring VTOL modes
tilt_left = SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorLeft);
tilt_right = SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorRight);
/*
apply extra elevator when at high pitch errors, using a
power law. This allows the motors to point straight up for
takeoff without integrator windup
*/
int32_t pitch_error_cd = (plane.nav_pitch_cd - ahrs_view->pitch_sensor) * 0.5;
float extra_pitch = constrain_float(pitch_error_cd, -SERVO_MAX, SERVO_MAX) / SERVO_MAX;
float extra_sign = extra_pitch > 0?1:-1;
float extra_elevator = 0;
if (!is_zero(extra_pitch)) {
extra_elevator = extra_sign * powf(fabsf(extra_pitch), tailsitter.vectored_hover_power) * SERVO_MAX;
}
tilt_left = extra_elevator + tilt_left * tailsitter.vectored_hover_gain;
tilt_right = extra_elevator + tilt_right * tailsitter.vectored_hover_gain;
if (fabsf(tilt_left) >= SERVO_MAX || fabsf(tilt_right) >= SERVO_MAX) {
// prevent integrator windup
motors->limit.roll = 1;
motors->limit.pitch = 1;
motors->limit.yaw = 1;
}
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt_left);
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt_right);
}
if (tailsitter.input_mask_chan > 0 &&
tailsitter.input_mask > 0 &&
RC_Channels::get_radio_in(tailsitter.input_mask_chan-1) > 1700) {
// the user is learning to prop-hang
if (tailsitter.input_mask & TAILSITTER_MASK_AILERON) {
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.channel_roll->get_control_in_zero_dz());
}
if (tailsitter.input_mask & TAILSITTER_MASK_ELEVATOR) {
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, plane.channel_pitch->get_control_in_zero_dz());
}
if (tailsitter.input_mask & TAILSITTER_MASK_THROTTLE) {
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.get_throttle_input(true));
}
if (tailsitter.input_mask & TAILSITTER_MASK_RUDDER) {
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, plane.channel_rudder->get_control_in_zero_dz());
}
}
}
/*
return true when we have completed enough of a transition to switch to fixed wing control
*/
bool QuadPlane::tailsitter_transition_fw_complete(void)
{
if (plane.fly_inverted()) {
// transition immediately
return true;
}
int32_t roll_cd = labs(ahrs_view->roll_sensor);
if (roll_cd > 9000) {
roll_cd = 18000 - roll_cd;
}
if (labs(ahrs_view->pitch_sensor) > tailsitter.transition_angle*100 ||
roll_cd > tailsitter.transition_angle*100 ||
AP_HAL::millis() - transition_start_ms > uint32_t(transition_time_ms)) {
return true;
}
// still waiting
return false;
}
/*
return true when we have completed enough of a transition to switch to VTOL control
*/
bool QuadPlane::tailsitter_transition_vtol_complete(void) const
{
if (plane.fly_inverted()) {
// transition immediately
return true;
}
if (labs(plane.ahrs.pitch_sensor) > tailsitter.transition_angle*100 ||
labs(plane.ahrs.roll_sensor) > tailsitter.transition_angle*100 ||
AP_HAL::millis() - transition_start_ms > 2000) {
return true;
}
// still waiting
attitude_control->reset_rate_controller_I_terms();
return false;
}
// handle different tailsitter input types
void QuadPlane::tailsitter_check_input(void)
{
if (tailsitter_active() &&
(tailsitter.input_type == TAILSITTER_INPUT_BF_ROLL_P ||
tailsitter.input_type == TAILSITTER_INPUT_BF_ROLL_M ||
tailsitter.input_type == TAILSITTER_INPUT_PLANE)) {
// the user has asked for body frame controls when tailsitter
// is active. We switch around the control_in value for the
// channels to do this, as that ensures the value is
// consistent throughout the code
int16_t roll_in = plane.channel_roll->get_control_in();
int16_t yaw_in = plane.channel_rudder->get_control_in();
plane.channel_roll->set_control_in(yaw_in);
plane.channel_rudder->set_control_in(-roll_in);
}
}
/*
return true if we are a tailsitter transitioning to VTOL flight
*/
bool QuadPlane::in_tailsitter_vtol_transition(void) const
{
return is_tailsitter() && in_vtol_mode() && transition_state == TRANSITION_ANGLE_WAIT_VTOL;
}
/*
account for speed scaling of control surfaces in VTOL modes
*/
void QuadPlane::tailsitter_speed_scaling(void)
{
const float hover_throttle = motors->get_throttle_hover();
const float throttle = motors->get_throttle();
float spd_scaler = 1;
// If throttle_scale_max is > 1, boost gains at low throttle
if (tailsitter.throttle_scale_max > 1) {
if (is_zero(throttle)) {
spd_scaler = tailsitter.throttle_scale_max;
} else {
spd_scaler = constrain_float(hover_throttle / throttle, 0, tailsitter.throttle_scale_max);
}
} else {
// reduce gains when flying at high speed in Q modes:
// critical parameter: violent oscillations if too high
// sudden loss of attitude control if too low
constexpr float max_atten = 0.2f;
float tthr = 1.25f * hover_throttle;
float aspeed;
bool airspeed_enabled = ahrs.airspeed_sensor_enabled();
// If there is an airspeed sensor use the measured airspeed
// The airspeed estimate based only on GPS and (estimated) wind is
// not sufficiently accurate for tailsitters.
// (based on tests in RealFlight 8 with 10kph wind)
if (airspeed_enabled && ahrs.airspeed_estimate(&aspeed)) {
// plane.get_speed_scaler() doesn't work well for copter tailsitters
// ramp down from 1 to max_atten as speed increases to airspeed_max
spd_scaler = constrain_float(1 - (aspeed / plane.aparm.airspeed_max), max_atten, 1.0f);
} else {
// if no airspeed sensor reduce control surface throws at large tilt
// angles (assuming high airspeed)
// ramp down from 1 to max_atten at tilt angles over trans_angle
// (angles here are represented by their cosines)
// Note that the cosf call will be necessary if trans_angle becomes a parameter
// but the C language spec does not guarantee that trig functions can be used
// in constant expressions, even though gcc currently allows it.
constexpr float c_trans_angle = 0.9238795; // cosf(.125f * M_PI)
// alpha = (1 - max_atten) / (c_trans_angle - cosf(radians(90)));
constexpr float alpha = (1 - max_atten) / c_trans_angle;
constexpr float beta = 1 - alpha * c_trans_angle;
const float c_tilt = ahrs_view->get_rotation_body_to_ned().c.z;
if (c_tilt < c_trans_angle) {
spd_scaler = constrain_float(beta + alpha * c_tilt, max_atten, 1.0f);
// reduce throttle attenuation threshold too
tthr = 0.5f * hover_throttle;
}
}
// if throttle is above hover thrust, apply additional attenuation
if (throttle > tthr) {
const float throttle_atten = 1 - (throttle - tthr) / (1 - tthr);
spd_scaler *= throttle_atten;
spd_scaler = constrain_float(spd_scaler, max_atten, 1.0f);
}
}
// limit positive and negative slew rates of applied speed scaling
constexpr float posTC = 5.0f; // seconds
constexpr float negTC = 2.0f; // seconds
const float posdelta = plane.G_Dt / posTC;
const float negdelta = plane.G_Dt / negTC;
static float last_scale = 0;
static float scale = 0;
if ((spd_scaler - last_scale) > 0) {
if ((spd_scaler - last_scale) > posdelta) {
scale += posdelta;
} else {
scale = spd_scaler;
}
} else {
if ((spd_scaler - last_scale) < -negdelta) {
scale -= negdelta;
} else {
scale = spd_scaler;
}
}
last_scale = scale;
const SRV_Channel::Aux_servo_function_t functions[5] = {
SRV_Channel::Aux_servo_function_t::k_aileron,
SRV_Channel::Aux_servo_function_t::k_elevator,
SRV_Channel::Aux_servo_function_t::k_rudder,
SRV_Channel::Aux_servo_function_t::k_tiltMotorLeft,
SRV_Channel::Aux_servo_function_t::k_tiltMotorRight};
for (uint8_t i=0; i<ARRAY_SIZE(functions); i++) {
int32_t v = SRV_Channels::get_output_scaled(functions[i]);
v *= scale;
v = constrain_int32(v, -SERVO_MAX, SERVO_MAX);
SRV_Channels::set_output_scaled(functions[i], v);
}
}