forked from ArduPilot/ardupilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
altitude.cpp
730 lines (656 loc) · 25 KB
/
altitude.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Plane.h"
/*
altitude handling routines. These cope with both barometric control
and terrain following control
*/
/*
adjust altitude target depending on mode
*/
void Plane::adjust_altitude_target()
{
Location target_location;
if (control_mode == &mode_fbwb ||
control_mode == &mode_cruise) {
return;
}
#if OFFBOARD_GUIDED == ENABLED
if (control_mode == &mode_guided && ((guided_state.target_alt_time_ms != 0) || guided_state.target_alt > -0.001 )) { // target_alt now defaults to -1, and _time_ms defaults to zero.
// offboard altitude demanded
uint32_t now = AP_HAL::millis();
float delta = 1e-3f * (now - guided_state.target_alt_time_ms);
guided_state.target_alt_time_ms = now;
// determine delta accurately as a float
float delta_amt_f = delta * guided_state.target_alt_accel;
// then scale x100 to match last_target_alt and convert to a signed int32_t as it may be negative
int32_t delta_amt_i = (int32_t)(100.0 * delta_amt_f);
Location temp {};
temp.alt = guided_state.last_target_alt + delta_amt_i; // ...to avoid floats here,
if (is_positive(guided_state.target_alt_accel)) {
temp.alt = MIN(guided_state.target_alt, temp.alt);
} else {
temp.alt = MAX(guided_state.target_alt, temp.alt);
}
guided_state.last_target_alt = temp.alt;
set_target_altitude_location(temp);
} else
#endif // OFFBOARD_GUIDED == ENABLED
if (landing.is_flaring()) {
// during a landing flare, use TECS_LAND_SINK as a target sink
// rate, and ignores the target altitude
set_target_altitude_location(next_WP_loc);
} else if (landing.is_on_approach()) {
landing.setup_landing_glide_slope(prev_WP_loc, next_WP_loc, current_loc, target_altitude.offset_cm);
landing.adjust_landing_slope_for_rangefinder_bump(rangefinder_state, prev_WP_loc, next_WP_loc, current_loc, auto_state.wp_distance, target_altitude.offset_cm);
} else if (landing.get_target_altitude_location(target_location)) {
set_target_altitude_location(target_location);
#if HAL_SOARING_ENABLED
} else if (g2.soaring_controller.is_active() && g2.soaring_controller.get_throttle_suppressed()) {
// Reset target alt to current alt, to prevent large altitude errors when gliding.
set_target_altitude_location(current_loc);
reset_offset_altitude();
#endif
} else if (reached_loiter_target()) {
// once we reach a loiter target then lock to the final
// altitude target
set_target_altitude_location(next_WP_loc);
} else if (target_altitude.offset_cm != 0 &&
!current_loc.past_interval_finish_line(prev_WP_loc, next_WP_loc)) {
// control climb/descent rate
set_target_altitude_proportion(next_WP_loc, 1.0f-auto_state.wp_proportion);
// stay within the range of the start and end locations in altitude
constrain_target_altitude_location(next_WP_loc, prev_WP_loc);
} else {
set_target_altitude_location(next_WP_loc);
}
altitude_error_cm = calc_altitude_error_cm();
}
/*
setup for a gradual glide slope to the next waypoint, if appropriate
*/
void Plane::setup_glide_slope(void)
{
// establish the distance we are travelling to the next waypoint,
// for calculating out rate of change of altitude
auto_state.wp_distance = current_loc.get_distance(next_WP_loc);
auto_state.wp_proportion = current_loc.line_path_proportion(prev_WP_loc, next_WP_loc);
SpdHgt_Controller->set_path_proportion(auto_state.wp_proportion);
update_flight_stage();
/*
work out if we will gradually change altitude, or try to get to
the new altitude as quickly as possible.
*/
switch (control_mode->mode_number()) {
case Mode::Number::RTL:
case Mode::Number::AVOID_ADSB:
case Mode::Number::GUIDED:
/* glide down slowly if above target altitude, but ascend more
rapidly if below it. See
https://github.com/ArduPilot/ardupilot/issues/39
*/
if (above_location_current(next_WP_loc)) {
set_offset_altitude_location(next_WP_loc);
} else {
reset_offset_altitude();
}
break;
case Mode::Number::AUTO:
// we only do glide slide handling in AUTO when above 20m or
// when descending. The 20 meter threshold is arbitrary, and
// is basically to prevent situations where we try to slowly
// gain height at low altitudes, potentially hitting
// obstacles.
if (adjusted_relative_altitude_cm() > 2000 || above_location_current(next_WP_loc)) {
set_offset_altitude_location(next_WP_loc);
} else {
reset_offset_altitude();
}
break;
default:
reset_offset_altitude();
break;
}
}
/*
return RTL altitude as AMSL altitude
*/
int32_t Plane::get_RTL_altitude()
{
if (g.RTL_altitude_cm < 0) {
return current_loc.alt;
}
return g.RTL_altitude_cm + home.alt;
}
/*
return relative altitude in meters (relative to terrain, if available,
or home otherwise)
*/
float Plane::relative_ground_altitude(bool use_rangefinder_if_available)
{
if (use_rangefinder_if_available && rangefinder_state.in_range) {
return rangefinder_state.height_estimate;
}
if (use_rangefinder_if_available && quadplane.in_vtol_land_final() &&
rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::Status::OutOfRangeLow) {
// a special case for quadplane landing when rangefinder goes
// below minimum. Consider our height above ground to be zero
return 0;
}
#if AP_TERRAIN_AVAILABLE
float altitude;
if (target_altitude.terrain_following &&
terrain.status() == AP_Terrain::TerrainStatusOK &&
terrain.height_above_terrain(altitude, true)) {
return altitude;
}
#endif
if (quadplane.in_vtol_land_descent() &&
!(quadplane.options & QuadPlane::OPTION_MISSION_LAND_FW_APPROACH)) {
// when doing a VTOL landing we can use the waypoint height as
// ground height. We can't do this if using the
// LAND_FW_APPROACH as that uses the wp height as the approach
// height
return height_above_target();
}
return relative_altitude;
}
/*
set the target altitude to the current altitude. This is used when
setting up for altitude hold, such as when releasing elevator in
CRUISE mode.
*/
void Plane::set_target_altitude_current(void)
{
// record altitude above sea level at the current time as our
// target altitude
target_altitude.amsl_cm = current_loc.alt;
// reset any glide slope offset
reset_offset_altitude();
#if AP_TERRAIN_AVAILABLE
// also record the terrain altitude if possible
float terrain_altitude;
if (g.terrain_follow && terrain.height_above_terrain(terrain_altitude, true) && !terrain_disabled()) {
target_altitude.terrain_following = true;
target_altitude.terrain_alt_cm = terrain_altitude*100;
} else {
// if terrain following is disabled, or we don't know our
// terrain altitude when we set the altitude then don't
// terrain follow
target_altitude.terrain_following = false;
}
#endif
}
/*
set the target altitude to the current altitude, with ALT_OFFSET adjustment
*/
void Plane::set_target_altitude_current_adjusted(void)
{
set_target_altitude_current();
// use adjusted_altitude_cm() to take account of ALTITUDE_OFFSET
target_altitude.amsl_cm = adjusted_altitude_cm();
}
/*
set target altitude based on a location structure
*/
void Plane::set_target_altitude_location(const Location &loc)
{
target_altitude.amsl_cm = loc.alt;
if (loc.relative_alt) {
target_altitude.amsl_cm += home.alt;
}
#if AP_TERRAIN_AVAILABLE
/*
if this location has the terrain_alt flag set and we know the
terrain altitude of our current location then treat it as a
terrain altitude
*/
float height;
if (loc.terrain_alt && terrain.height_above_terrain(height, true)) {
target_altitude.terrain_following = true;
target_altitude.terrain_alt_cm = loc.alt;
if (!loc.relative_alt) {
// it has home added, remove it
target_altitude.terrain_alt_cm -= home.alt;
}
} else {
target_altitude.terrain_following = false;
}
#endif
}
/*
return relative to home target altitude in centimeters. Used for
altitude control libraries
*/
int32_t Plane::relative_target_altitude_cm(void)
{
#if AP_TERRAIN_AVAILABLE
float relative_home_height;
if (target_altitude.terrain_following &&
terrain.height_relative_home_equivalent(target_altitude.terrain_alt_cm*0.01f,
relative_home_height, true)) {
// add lookahead adjustment the target altitude
target_altitude.lookahead = lookahead_adjustment();
relative_home_height += target_altitude.lookahead;
// correct for rangefinder data
relative_home_height += rangefinder_correction();
// we are following terrain, and have terrain data for the
// current location. Use it.
return relative_home_height*100;
}
#endif
int32_t relative_alt = target_altitude.amsl_cm - home.alt;
relative_alt += mission_alt_offset()*100;
relative_alt += rangefinder_correction() * 100;
return relative_alt;
}
/*
change the current target altitude by an amount in centimeters. Used
to cope with changes due to elevator in CRUISE or FBWB
*/
void Plane::change_target_altitude(int32_t change_cm)
{
target_altitude.amsl_cm += change_cm;
#if AP_TERRAIN_AVAILABLE
if (target_altitude.terrain_following && !terrain_disabled()) {
target_altitude.terrain_alt_cm += change_cm;
}
#endif
}
/*
change target altitude by a proportion of the target altitude offset
(difference in height to next WP from previous WP). proportion
should be between 0 and 1.
When proportion is zero we have reached the destination. When
proportion is 1 we are at the starting waypoint.
Note that target_altitude is setup initially based on the
destination waypoint
*/
void Plane::set_target_altitude_proportion(const Location &loc, float proportion)
{
set_target_altitude_location(loc);
proportion = constrain_float(proportion, 0.0f, 1.0f);
change_target_altitude(-target_altitude.offset_cm*proportion);
//rebuild the glide slope if we are above it and supposed to be climbing
if(g.glide_slope_threshold > 0) {
if(target_altitude.offset_cm > 0 && calc_altitude_error_cm() < -100 * g.glide_slope_threshold) {
set_target_altitude_location(loc);
set_offset_altitude_location(loc);
change_target_altitude(-target_altitude.offset_cm*proportion);
//adjust the new target offset altitude to reflect that we are partially already done
if(proportion > 0.0f)
target_altitude.offset_cm = ((float)target_altitude.offset_cm)/proportion;
}
}
}
/*
constrain target altitude to be between two locations. Used to
ensure we stay within two waypoints in altitude
*/
void Plane::constrain_target_altitude_location(const Location &loc1, const Location &loc2)
{
if (loc1.alt > loc2.alt) {
target_altitude.amsl_cm = constrain_int32(target_altitude.amsl_cm, loc2.alt, loc1.alt);
} else {
target_altitude.amsl_cm = constrain_int32(target_altitude.amsl_cm, loc1.alt, loc2.alt);
}
}
/*
return error between target altitude and current altitude
*/
int32_t Plane::calc_altitude_error_cm(void)
{
#if AP_TERRAIN_AVAILABLE
float terrain_height;
if (target_altitude.terrain_following &&
terrain.height_above_terrain(terrain_height, true)) {
return target_altitude.lookahead*100 + target_altitude.terrain_alt_cm - (terrain_height*100);
}
#endif
return target_altitude.amsl_cm - adjusted_altitude_cm();
}
/*
check for FBWB_min_altitude_cm violation
*/
void Plane::check_fbwb_minimum_altitude(void)
{
if (g.FBWB_min_altitude_cm == 0) {
return;
}
#if AP_TERRAIN_AVAILABLE
if (target_altitude.terrain_following) {
// set our target terrain height to be at least the min set
if (target_altitude.terrain_alt_cm < g.FBWB_min_altitude_cm) {
target_altitude.terrain_alt_cm = g.FBWB_min_altitude_cm;
}
return;
}
#endif
if (target_altitude.amsl_cm < home.alt + g.FBWB_min_altitude_cm) {
target_altitude.amsl_cm = home.alt + g.FBWB_min_altitude_cm;
}
}
/*
reset the altitude offset used for glide slopes
*/
void Plane::reset_offset_altitude(void)
{
target_altitude.offset_cm = 0;
}
/*
reset the altitude offset used for glide slopes, based on difference
between altitude at a destination and current altitude. If
destination is above the current altitude then the result is
positive.
*/
void Plane::set_offset_altitude_location(const Location &loc)
{
target_altitude.offset_cm = loc.alt - current_loc.alt;
#if AP_TERRAIN_AVAILABLE
/*
if this location has the terrain_alt flag set and we know the
terrain altitude of our current location then treat it as a
terrain altitude
*/
float height;
if (loc.terrain_alt &&
target_altitude.terrain_following &&
terrain.height_above_terrain(height, true)) {
target_altitude.offset_cm = target_altitude.terrain_alt_cm - (height * 100);
}
#endif
if (flight_stage != AP_Vehicle::FixedWing::FLIGHT_LAND) {
// if we are within GLIDE_SLOPE_MIN meters of the target altitude
// then reset the offset to not use a glide slope. This allows for
// more accurate flight of missions where the aircraft may lose or
// gain a bit of altitude near waypoint turn points due to local
// terrain changes
if (g.glide_slope_min <= 0 ||
labs(target_altitude.offset_cm)*0.01f < g.glide_slope_min) {
target_altitude.offset_cm = 0;
}
}
}
/*
return true if current_loc is above loc. Used for glide slope
calculations.
"above" is simple if we are not terrain following, as it just means
the pressure altitude of one is above the other.
When in terrain following mode "above" means the over-the-terrain
current altitude is above the over-the-terrain alt of loc. It is
quite possible for current_loc to be "above" loc when it is at a
lower pressure altitude, if current_loc is in a low part of the
terrain
*/
bool Plane::above_location_current(const Location &loc)
{
#if AP_TERRAIN_AVAILABLE
float terrain_alt;
if (loc.terrain_alt &&
terrain.height_above_terrain(terrain_alt, true)) {
float loc_alt = loc.alt*0.01f;
if (!loc.relative_alt) {
loc_alt -= home.alt*0.01f;
}
return terrain_alt > loc_alt;
}
#endif
float loc_alt_cm = loc.alt;
if (loc.relative_alt) {
loc_alt_cm += home.alt;
}
return current_loc.alt > loc_alt_cm;
}
/*
modify a destination to be setup for terrain following if
TERRAIN_FOLLOW is enabled
*/
void Plane::setup_terrain_target_alt(Location &loc)
{
#if AP_TERRAIN_AVAILABLE
if (g.terrain_follow) {
loc.terrain_alt = true;
}
#endif
}
/*
return current_loc.alt adjusted for ALT_OFFSET
This is useful during long flights to account for barometer changes
from the GCS, or to adjust the flying height of a long mission
*/
int32_t Plane::adjusted_altitude_cm(void)
{
return current_loc.alt - (mission_alt_offset()*100);
}
/*
return home-relative altitude adjusted for ALT_OFFSET This is useful
during long flights to account for barometer changes from the GCS,
or to adjust the flying height of a long mission
*/
int32_t Plane::adjusted_relative_altitude_cm(void)
{
return (relative_altitude - mission_alt_offset())*100;
}
/*
return the mission altitude offset. This raises or lowers all
mission items. It is primarily set using the ALT_OFFSET parameter,
but can also be adjusted by the rangefinder landing code for a
NAV_LAND command if we have aborted a steep landing
*/
float Plane::mission_alt_offset(void)
{
float ret = g.alt_offset;
if (control_mode == &mode_auto &&
(flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND || auto_state.wp_is_land_approach)) {
// when landing after an aborted landing due to too high glide
// slope we use an offset from the last landing attempt
ret += landing.alt_offset;
}
return ret;
}
/*
return the height in meters above the next_WP_loc altitude
*/
float Plane::height_above_target(void)
{
float target_alt = next_WP_loc.alt*0.01;
if (!next_WP_loc.relative_alt) {
target_alt -= ahrs.get_home().alt*0.01f;
}
#if AP_TERRAIN_AVAILABLE
// also record the terrain altitude if possible
float terrain_altitude;
if (next_WP_loc.terrain_alt &&
terrain.height_above_terrain(terrain_altitude, true)) {
return terrain_altitude - target_alt;
}
#endif
return (adjusted_altitude_cm()*0.01f - ahrs.get_home().alt*0.01f) - target_alt;
}
/*
work out target altitude adjustment from terrain lookahead
*/
float Plane::lookahead_adjustment(void)
{
#if AP_TERRAIN_AVAILABLE
int32_t bearing_cd;
int16_t distance;
// work out distance and bearing to target
if (control_mode == &mode_fbwb) {
// there is no target waypoint in FBWB, so use yaw as an approximation
bearing_cd = ahrs.yaw_sensor;
distance = g.terrain_lookahead;
} else if (!reached_loiter_target()) {
bearing_cd = nav_controller->target_bearing_cd();
distance = constrain_float(auto_state.wp_distance, 0, g.terrain_lookahead);
} else {
// no lookahead when loitering
bearing_cd = 0;
distance = 0;
}
if (distance <= 0) {
// no lookahead
return 0;
}
float groundspeed = ahrs.groundspeed();
if (groundspeed < 1) {
// we're not moving
return 0;
}
// we need to know the climb ratio. We use 50% of the maximum
// climb rate so we are not constantly at 100% throttle and to
// give a bit more margin on terrain
float climb_ratio = 0.5f * SpdHgt_Controller->get_max_climbrate() / groundspeed;
if (climb_ratio <= 0) {
// lookahead makes no sense for negative climb rates
return 0;
}
// ask the terrain code for the lookahead altitude change
float lookahead = terrain.lookahead(bearing_cd*0.01f, distance, climb_ratio);
if (target_altitude.offset_cm < 0) {
// we are heading down to the waypoint, so we don't need to
// climb as much
lookahead += target_altitude.offset_cm*0.01f;
}
// constrain lookahead to a reasonable limit
return constrain_float(lookahead, 0, 1000.0f);
#else
return 0;
#endif
}
/*
correct target altitude using rangefinder data. Returns offset in
meters to correct target altitude. A positive number means we need
to ask the speed/height controller to fly higher
*/
float Plane::rangefinder_correction(void)
{
if (millis() - rangefinder_state.last_correction_time_ms > 5000) {
// we haven't had any rangefinder data for 5s - don't use it
return 0;
}
// for now we only support the rangefinder for landing
bool using_rangefinder = (g.rangefinder_landing && flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND);
if (!using_rangefinder) {
return 0;
}
return rangefinder_state.correction;
}
/*
correct rangefinder data for terrain height difference between
NAV_LAND point and current location
*/
void Plane::rangefinder_terrain_correction(float &height)
{
#if AP_TERRAIN_AVAILABLE
if (!g.rangefinder_landing ||
flight_stage != AP_Vehicle::FixedWing::FLIGHT_LAND ||
g.terrain_follow == 0) {
return;
}
float terrain_amsl1, terrain_amsl2;
if (!terrain.height_amsl(current_loc, terrain_amsl1, false) ||
!terrain.height_amsl(next_WP_loc, terrain_amsl2, false)) {
return;
}
float correction = (terrain_amsl1 - terrain_amsl2);
height += correction;
auto_state.terrain_correction = correction;
#endif
}
/*
update the offset between rangefinder height and terrain height
*/
void Plane::rangefinder_height_update(void)
{
float distance = rangefinder.distance_cm_orient(ROTATION_PITCH_270)*0.01f;
if ((rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::Status::Good) && ahrs.home_is_set()) {
if (!rangefinder_state.have_initial_reading) {
rangefinder_state.have_initial_reading = true;
rangefinder_state.initial_range = distance;
}
// correct the range for attitude (multiply by DCM.c.z, which
// is cos(roll)*cos(pitch))
rangefinder_state.height_estimate = distance * ahrs.get_rotation_body_to_ned().c.z;
rangefinder_terrain_correction(rangefinder_state.height_estimate);
// we consider ourselves to be fully in range when we have 10
// good samples (0.2s) that are different by 5% of the maximum
// range from the initial range we see. The 5% change is to
// catch Lidars that are giving a constant range, either due
// to misconfiguration or a faulty sensor
if (rangefinder_state.in_range_count < 10) {
if (!is_equal(distance, rangefinder_state.last_distance) &&
fabsf(rangefinder_state.initial_range - distance) > 0.05f * rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)*0.01f) {
rangefinder_state.in_range_count++;
}
if (fabsf(rangefinder_state.last_distance - distance) > rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)*0.01*0.2) {
// changes by more than 20% of full range will reset counter
rangefinder_state.in_range_count = 0;
}
} else {
rangefinder_state.in_range = true;
if (!rangefinder_state.in_use &&
(flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND ||
control_mode == &mode_qland ||
control_mode == &mode_qrtl ||
(control_mode == &mode_auto && quadplane.is_vtol_land(plane.mission.get_current_nav_cmd().id))) &&
g.rangefinder_landing) {
rangefinder_state.in_use = true;
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder engaged at %.2fm", (double)rangefinder_state.height_estimate);
}
}
rangefinder_state.last_distance = distance;
} else {
rangefinder_state.in_range_count = 0;
rangefinder_state.in_range = false;
}
if (rangefinder_state.in_range) {
// base correction is the difference between baro altitude and
// rangefinder estimate
float correction = relative_altitude - rangefinder_state.height_estimate;
#if AP_TERRAIN_AVAILABLE
// if we are terrain following then correction is based on terrain data
float terrain_altitude;
if ((target_altitude.terrain_following || g.terrain_follow) &&
terrain.height_above_terrain(terrain_altitude, true)) {
correction = terrain_altitude - rangefinder_state.height_estimate;
}
#endif
// remember the last correction. Use a low pass filter unless
// the old data is more than 5 seconds old
uint32_t now = millis();
if (now - rangefinder_state.last_correction_time_ms > 5000) {
rangefinder_state.correction = correction;
rangefinder_state.initial_correction = correction;
landing.set_initial_slope();
rangefinder_state.last_correction_time_ms = now;
} else {
rangefinder_state.correction = 0.8f*rangefinder_state.correction + 0.2f*correction;
rangefinder_state.last_correction_time_ms = now;
if (fabsf(rangefinder_state.correction - rangefinder_state.initial_correction) > 30) {
// the correction has changed by more than 30m, reset use of Lidar. We may have a bad lidar
if (rangefinder_state.in_use) {
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder disengaged at %.2fm", (double)rangefinder_state.height_estimate);
}
memset(&rangefinder_state, 0, sizeof(rangefinder_state));
}
}
}
}
/*
determine if Non Auto Terrain Disable is active and allowed in present control mode
*/
bool Plane::terrain_disabled()
{
return control_mode->allows_terrain_disable() && non_auto_terrain_disable;
}