forked from abkoesdw/multi-keywords-spotting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathecho_canc_lib.py
683 lines (549 loc) · 22.6 KB
/
echo_canc_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
import numpy as np
def create_time_series(in_, out_, lag_):
data_in, data_out = [], []
_, col_ = np.shape(in_)
in_ = np.concatenate((np.zeros((lag_, col_)), in_), axis=0)
out_ = np.concatenate((np.zeros((lag_, col_)), out_), axis=0)
row_, _ = np.shape(in_)
for i in range(row_ - lag_):
a = in_[i:i + lag_ + 1, :]
if i == 0:
data_in = a[::-1].reshape((col_ * lag_ + col_, 1))
data_out = out_[i + lag_, :].reshape((col_, 1))
# print dataY
else:
data_in = np.append(data_in, a[::-1].reshape((col_ * lag_ + col_, 1)), axis=1)
data_out = np.append(data_out, out_[i + lag_, :].reshape((col_, 1)), axis=1)
return data_in.T, data_out.T
def get_energy(dataset_, sqrt):
rec_real = dataset_['rec_real']
rec_im = dataset_['rec_im']
src_real = dataset_['src_real']
src_im = dataset_['src_im']
rec_temp = rec_real ** 2 + rec_im ** 2
src_temp = src_real ** 2 + src_im ** 2
rec_ = rec_temp
src_ = src_temp
if sqrt == 1:
rec_ = np.sqrt(rec_temp)
src_ = np.sqrt(src_temp)
input_temp = src_
output_temp = rec_
return input_temp, output_temp
def get_complex_num(y_temp, output_energy, rec_real, rec_im):
row_out, col_out = output_energy.shape
y_ = np.zeros((row_out, col_out * 2))
y_sub = np.zeros((row_out, col_out * 2))
y_orig = np.zeros((row_out, col_out * 2))
for data_point in range(row_out):
for en_band in range(col_out):
if output_energy[data_point, en_band] == 0:
y_temp_real = 0
y_temp_imag = 0
real_ = 0
imag_ = 0
else:
orig_real = (rec_real[data_point, en_band] ** 2)
pred_real = (rec_real[data_point, en_band] ** 2) * \
((y_temp[data_point, en_band] / output_energy[data_point, en_band]) ** 2)
real_sub = orig_real - pred_real
orig_im = (rec_im[data_point, en_band] ** 2)
pred_im = (rec_im[data_point, en_band] ** 2) * \
((y_temp[data_point, en_band] / output_energy[data_point, en_band]) ** 2)
imag_sub = orig_im - pred_im
if real_sub < 0:
real_sub = 0
if imag_sub < 0:
imag_sub = 0
real_sub = np.sqrt(real_sub)
imag_sub = np.sqrt(imag_sub)
if rec_real[data_point, en_band] > 0:
real_sub = real_sub
if rec_im[data_point, en_band] > 0:
imag_sub = imag_sub
if rec_real[data_point, en_band] < 0:
real_sub = - real_sub
if rec_im[data_point, en_band] < 0:
imag_sub = - imag_sub
y_temp_real = pred_real
y_temp_imag = pred_im
y_orig_real = orig_real
y_orig_imag = orig_im
y_temp_real = np.sqrt(y_temp_real)
y_temp_imag = np.sqrt(y_temp_imag)
y_orig_real = np.sqrt(y_orig_real)
y_orig_imag = np.sqrt(y_orig_imag)
if rec_real[data_point, en_band] > 0:
y_temp_real = y_temp_real
y_orig_real = y_orig_real
if rec_im[data_point, en_band] > 0:
y_temp_imag = y_temp_imag
y_orig_imag = y_orig_imag
if rec_real[data_point, en_band] < 0:
y_temp_real = - y_temp_real
y_orig_real = - y_orig_real
if rec_im[data_point, en_band] < 0:
y_temp_imag = - y_temp_imag
y_orig_imag = - y_orig_imag
y_[data_point, en_band] = y_temp_real
y_[data_point, en_band+256] = y_temp_imag
y_sub[data_point, en_band] = real_sub
y_sub[data_point, en_band+256] = imag_sub
y_orig[data_point, en_band] = y_orig_real
y_orig[data_point, en_band + 256] = y_orig_imag
return y_, y_sub, y_orig
def get_complex_num_demo(y_temp, output_energy, rec_real, rec_im):
row_out, col_out = output_energy.shape
y_sub = np.zeros((row_out, col_out * 2))
for data_point in range(row_out):
for en_band in range(col_out):
if output_energy[data_point, en_band] != 0:
orig_real = (rec_real[data_point, en_band] ** 2)
pred_real = (rec_real[data_point, en_band] ** 2) * \
((y_temp[data_point, en_band] / output_energy[data_point, en_band]) ** 2)
real_sub = orig_real - pred_real
orig_im = (rec_im[data_point, en_band] ** 2)
pred_im = (rec_im[data_point, en_band] ** 2) * \
((y_temp[data_point, en_band] / output_energy[data_point, en_band]) ** 2)
imag_sub = orig_im - pred_im
if real_sub < 0:
real_sub = 0
if imag_sub < 0:
imag_sub = 0
real_sub = np.sqrt(real_sub)
imag_sub = np.sqrt(imag_sub)
if rec_real[data_point, en_band] > 0:
real_sub = real_sub
if rec_im[data_point, en_band] > 0:
imag_sub = imag_sub
if rec_real[data_point, en_band] < 0:
real_sub = - real_sub
if rec_im[data_point, en_band] < 0:
imag_sub = - imag_sub
y_sub[data_point, en_band] = real_sub
y_sub[data_point, en_band+256] = imag_sub
return y_sub
def get_labels(line_):
keyword = {}
start_frame = {}
end_frame = {}
kw_lst = line_.split()
len_word = len(kw_lst)
filename_ = kw_lst[0][7:]
i = 1
j = 0
while i < len_word:
if kw_lst[i] == 'system' or kw_lst[i] == 'systems':
keyword[str(j)] = kw_lst[i]
start_frame[str(j)] = int(kw_lst[i + 1])/100
end_frame[str(j)] = int(kw_lst[i + 2])/100
i += 3
j += 1
else:
i += 3
return filename_, keyword, start_frame, end_frame
def get_feature(mfcc_feat, left_context, right_context):
num_frames, num_cep = mfcc_feat.shape
feature = np.array([])
for j in range(num_frames):
current_frame = mfcc_feat[j, :].reshape(1, num_cep)
if j < left_context and j + right_context <= num_frames:
frame_temp = np.tile(mfcc_feat[0, :], (left_context - j, 1))
if not mfcc_feat[0:j, :].any():
left_frame = frame_temp
else:
left_frame = np.concatenate((frame_temp, mfcc_feat[0:j, :].reshape(len(mfcc_feat[0:j, :]), num_cep)),
axis=0)
right_frame = mfcc_feat[j + 1:j + 1 + right_context, :].reshape(right_context, num_cep)
elif j >= left_context and j + right_context < num_frames:
left_frame = mfcc_feat[j - left_context:j, :].reshape(left_context, num_cep)
right_frame = mfcc_feat[j + 1:j + 1 + right_context, :].reshape(right_context, num_cep)
else:
left_frame = mfcc_feat[j - left_context:j, :].reshape(left_context, num_cep)
frame_temp = np.tile(mfcc_feat[-1, :], (j + 1 + right_context - num_frames, 1))
right_frame = np.concatenate((mfcc_feat[j + 1:, :].reshape(len(mfcc_feat[j + 1:, :]), num_cep),
frame_temp)).reshape(right_context, num_cep)
feature_temp = np.concatenate((left_frame, current_frame, right_frame), axis=0)
feature_temp = feature_temp.reshape((left_context+right_context+1)*num_cep, 1)
if j == 0:
feature = feature_temp
else:
feature = np.concatenate((feature, feature_temp), axis=1)
return feature
def get_feature_new(mfcc_feat, left_context, right_context):
num_frames, num_cep = mfcc_feat.shape
feature = np.empty((num_cep*(left_context+right_context+1), 0))
for j in range(4, num_frames-right_context):
current_frame = mfcc_feat[j, :].reshape(num_cep, 1)
left_frame = mfcc_feat[j-3:j, :].reshape(num_cep*left_context, 1)
right_frame = mfcc_feat[j+1:j+1+right_context, :].reshape(num_cep*right_context, 1)
total_frame = np.concatenate((current_frame, left_frame, right_frame), axis=0)
feature = np.concatenate((feature, total_frame), axis=1)
return feature.T
def get_feature_multi(mfcc_feat, left_context, right_context):
num_frames, num_cep = mfcc_feat.shape
feature = np.empty((num_cep*(left_context+right_context+1), 0))
for j in range(4, num_frames-right_context):
current_frame = mfcc_feat[j, :].reshape(num_cep, 1)
left_frame = mfcc_feat[j-3:j, :].reshape(num_cep*left_context, 1)
right_frame = mfcc_feat[j+1:j+1+right_context, :].reshape(num_cep*right_context, 1)
total_frame = np.concatenate((current_frame, left_frame, right_frame), axis=0)
feature = np.concatenate((feature, total_frame), axis=1)
return feature.T
def get_label_new(start_frame, end_frame, total_frame, left_context, right_context):
label = np.zeros((int(total_frame), 1))
for i in range(len(start_frame)):
label[int(start_frame[i]):int(end_frame[i])+1] = 1
label = label[4:-right_context]
return label
def get_label_multi(line_split, total_frame, right_context):
labels = ['econom', 'financ', 'movie', 'music', 'news', 'resume', 'scien',
'sport', 'stop', 'world', 'us']
num_frames = total_frame
target_temp = np.zeros((1, num_frames))
start_frame = 0
end_frame = 0
flag_music = 0
for k in range(1, len(line_split), 3):
label_val = 1
for label in labels:
if label in line_split[k] and label is not "us":
start_frame = line_split[k + 1]
end_frame = line_split[k + 2]
target_temp[0, int(start_frame):int(end_frame) + 1] = int(label_val)
elif label == line_split[k] and label is "us":
start_frame = line_split[k + 1]
end_frame = line_split[k + 2]
target_temp[0, int(start_frame):int(end_frame) + 1] = int(label_val)
label_val += 1
target = target_temp[0, 4:-right_context]
return np.int16(target)
def get_label_multi_prev(keyword, start_frame, end_frame, right_context, prev_label):
labels = ['econom', 'financ', 'movie', 'music', 'news', 'resume', 'scien',
'sport', 'stop', 'world', 'us']
m = 1
label_val = 0
for label_item in labels:
if label_item in keyword:
label_val = m
m += 1
label = prev_label
label[int(start_frame):int(end_frame)+1] = int(label_val)
label_prev = label
label_final = label[4:-right_context]
return np.int16(label_final), np.int16(label_prev)
def get_label(feature, keyword, start_frame, end_frame):
num_feat, num_frames = feature.shape
label = np.zeros((1, num_frames))
for l in range(len(keyword)):
start_fr = int(start_frame[str(l)] / 1)
end_fr = int(end_frame[str(l)] / 1)
# len_fr = end_fr - start_fr
# idx_st = start_fr - (len_fr/2)
# idx_end = end_fr + (len_fr / 2)
# if keyword[str(l)] == "ok" or keyword[str(l)] == "okay":
# label[0, start_fr:end_fr + 1] = 1
if keyword[str(l)] == "system" or keyword[str(l)] == "systems":
label[0, start_fr:end_fr + 1] = 1
return label
def get_avg_lbl(keyword, start_frame, end_frame):
sum_ok = 0
sum_system = 0
# print keyword
if keyword:
# print keyword
for l in range(len(keyword)):
start_fr = start_frame[str(l)]
end_fr = end_frame[str(l)]
# if keyword[str(l)] == "ok" or keyword[str(l)] == "okay":
# sum_ok = (end_fr - start_fr)
if keyword[str(l)] == "system" or keyword[str(l)] == "systems":
sum_system = (end_fr - start_fr)
return sum_ok, sum_system
def align_wav(data1, data2):
# mod_data1 = len(data1) % 512
# mod_data2 = len(data2) % 512
# print mod_data1, mod_data2
# if mod_data1 != 0:
# data1 = np.append(data1, np.zeros((512 - mod_data1)))
#
# if mod_data2 != 0:
# data2 = np.append(data2, np.zeros((512 - mod_data2)))
data2_flipped = data2[::-1]
data1_fft = np.fft.rfft(data1)
data2_fft = np.fft.rfft(data2_flipped)
R1 = np.fft.irfft(data1_fft * data2_fft)
R1 = R1.real
# find the lag
idx_max = np.argmax(R1)
time_lag = np.arange(-len(data1) + 1, len(data1))
time_lag = np.reshape(time_lag, (len(time_lag), 1))
lag_temp = time_lag[idx_max]
lag = lag_temp[0]
data2_shifted = data2[-lag + 1:]
return data2_shifted, lag
def align_wav_live(data1, data2, prev_source):
# mod_data1 = len(data1) % 512
# mod_data2 = len(data2) % 512
# print mod_data1, mod_data2
# if mod_data1 != 0:
# data1 = np.append(data1, np.zeros((512 - mod_data1)))
#
# if mod_data2 != 0:
# data2 = np.append(data2, np.zeros((512 - mod_data2)))
data2_flipped = data2[::-1]
data1_fft = np.fft.rfft(data1)
data2_fft = np.fft.rfft(data2_flipped)
R1 = np.fft.irfft(data1_fft * data2_fft)
R1 = R1.real
# find the lag
idx_max = np.argmax(R1)
time_lag = np.arange(-len(data1) + 1, len(data1))
time_lag = np.reshape(time_lag, (len(time_lag), 1))
lag_temp = time_lag[idx_max]
lag = lag_temp[0]
# data2_shifted = data2[-lag + 1:]
# print(lag)
data1_shifted = np.append(prev_source[lag:], data1[:lag])
# print(data1_shifted.shape, data2.shape)
return data1_shifted, lag
def get_fft(w1, w2):
mod_w1 = len(w1) % 512
# print mod_w1, w1.shape
mod_w2 = len(w2) % 512
if mod_w1 != 0:
w1 = np.concatenate((w1, np.zeros((512 - mod_w1, 1))))
# if mod_w2 != 0:
len_diff = len(w1) - len(w2)
# print len_diff
w2 = np.concatenate((w2, np.zeros((len_diff, 1))))
# print mod_w2, len(w1), len(w2)
num_samples = 512
step_size = 256
i = 0
temp1 = np.array([])
temp2 = np.array([])
while i < len(w1):
temp_w1 = w1[i:i + num_samples]
temp_w2 = w2[i:i + num_samples]
# print k, temp_w1.shape, w1.shape, w2.shape
M = np.hamming(num_samples).reshape(num_samples, 1)
# print len(temp_w1), len(temp_w2),len(M)
if len(temp_w1) != len(M):
M = M[0:256]
temp_w1 = np.multiply(temp_w1, M)
temp_w2 = np.multiply(temp_w2, M)
# print temp_w1.shape
if len(temp_w1) != 512:
# print np.zeros((512-len(temp_w1), 1))
temp_w1 = np.concatenate((temp_w1, np.zeros(((512 - len(temp_w1)), 1))))
temp_w2 = np.concatenate((temp_w2, np.zeros(((512 - len(temp_w2)), 1))))
temp_w1_fft = np.fft.rfft(temp_w1, axis=0) # /len(temp_w1)
temp_w1_fft = temp_w1_fft[0:256, :]
temp_w2_fft = np.fft.rfft(temp_w2, axis=0) # /len(temp_w2)
temp_w2_fft = temp_w2_fft[0:256, :]
if i == 0:
temp1 = np.append(temp1, temp_w1_fft)
w1_fft = np.reshape(temp1, (256, 1))
temp2 = np.append(temp2, temp_w2_fft)
w2_fft = np.reshape(temp2, (256, 1))
else:
# print w1_fft.shape, temp_w1_fft.shape
w1_fft = np.append(w1_fft, temp_w1_fft, axis=1)
w2_fft = np.append(w2_fft, temp_w2_fft, axis=1)
i += step_size
w1_fft_real = np.transpose(w1_fft.real)
w1_fft_imag = np.transpose(w1_fft.imag)
w2_fft_real = np.transpose(w2_fft.real)
w2_fft_imag = np.transpose(w2_fft.imag)
return w1_fft_real, w1_fft_imag, w2_fft_real, w2_fft_imag
def compute_energy(src_real, src_im, rec_real, rec_im):
targ1 = rec_real
targ2 = rec_im
targ = targ1 ** 2 + targ2 ** 2
targ = np.sqrt(targ)
feat1 = src_real
feat2 = src_im
feat = feat1 ** 2 + feat2 ** 2
feat = np.sqrt(feat)
return feat, targ
def invert_energy(input_, output_, output_est, output_sub):
freq = np.fft.fftfreq(512, 1.000 / 16000)
idx1 = np.where(freq == 4000)[0][0]
idx2 = np.where(freq == -4000)[0][0]
file_type = ['source', 'recorded', 'predicted', 'subtracted', 'subtracted_energy']
w_fft = {}
w1_fft_real = input_[:, 0:256]
w1_fft_imag = input_[:, 256:512]
w_fft['1', 'real'] = w1_fft_real
w_fft['1', 'imag'] = w1_fft_imag
w2_fft_real = output_[:, 0:256]
w2_fft_imag = output_[:, 256:]
w_fft['2', 'real'] = w2_fft_real
w_fft['2', 'imag'] = w2_fft_imag
w3_fft_real = output_est[:, 0:256]
w3_fft_imag = output_est[:, 256:]
w_fft['3', 'real'] = w3_fft_real
w_fft['3', 'imag'] = w3_fft_imag
w5_fft_real = output_sub[:, 0:256]
w5_fft_imag = output_sub[:, 256:]
w_fft['5', 'real'] = w5_fft_real
w_fft['5', 'imag'] = w5_fft_imag
gain = 1
w4_fft_real = w2_fft_real - w3_fft_real * gain
w4_fft_imag = w2_fft_imag - w3_fft_imag * gain
w_fft['4', 'real'] = w4_fft_real
w_fft['4', 'imag'] = w4_fft_imag
w_temp = {}
divisor = 1
w = {}
for k in range(1, 6):
temp_1 = w_fft[str(k), 'real'] + 1j * w_fft[str(k), 'imag']
temp1_flipped = np.fliplr(w_fft[str(k), 'real'])
temp2_flipped = np.fliplr(w_fft[str(k), 'imag'])
temp_2 = temp1_flipped + 1j * temp2_flipped
temp = np.concatenate((temp_1, temp_2), axis=1)
temp[:, idx1:idx2 + 1] = temp[:, idx1:idx2 + 1] / divisor
w_temp[str(k)] = temp
w[file_type[k - 1]] = w_temp[str(k)]
wav_reconstructed = dict()
for file__ in file_type:
print("\n inverting", file__, "wav")
wave_file = w[file__]
temp_ = []
for k in range(0, len(wave_file)):
temp_wave = np.reshape(wave_file[k, :], (len(wave_file[k, :]), 1))
temp_wave_ifft = np.fft.irfft(temp_wave, n=len(temp_wave), axis=0)
if k == 0:
temp_ = np.append(temp_wave_ifft, np.zeros((1, 256)))
else:
temp2 = np.append(np.zeros((1, k * 256)), temp_wave_ifft)
temp_ += temp2
temp_ = np.append(temp_, np.zeros((1, 256)))
wav_reconstructed[file__] = np.array(temp_, dtype='int16')
return wav_reconstructed
def invert_energy_demo(output_sub):
freq = np.fft.fftfreq(512, 1.000 / 16000)
idx1 = np.where(freq == 4000)[0][0]
idx2 = np.where(freq == -4000)[0][0]
w_real = output_sub[:, 0:256]
w_imag = output_sub[:, 256:]
divisor = 10000
temp_1 = w_real + 1j * w_imag
temp1_flipped = np.fliplr(w_real)
temp2_flipped = np.fliplr(w_imag)
temp_2 = temp1_flipped + 1j * temp2_flipped
temp = np.concatenate((temp_1, temp_2), axis=1)
temp[:, idx1:idx2 + 1] = temp[:, idx1:idx2 + 1] / divisor
wave_file = temp
temp_ = []
for k in range(0, len(wave_file)):
temp_wave = np.reshape(wave_file[k, :], (len(wave_file[k, :]), 1))
temp_wave_ifft = np.fft.irfft(temp_wave, n=len(temp_wave), axis=0)
if k == 0:
temp_ = np.append(temp_wave_ifft, np.zeros((1, 256)))
else:
temp2 = np.append(np.zeros((1, k * 256)), temp_wave_ifft)
temp_ += temp2
temp_ = np.append(temp_, np.zeros((1, 256)))
wav_reconstructed = np.array(temp_, dtype='int16')
return wav_reconstructed
def compute_posterior(y_est, w_smooth, w_max):
num_data, _ = y_est.shape
j = 0
y_smooth = np.zeros((num_data, 2))
conf = np.zeros(num_data)
while j < num_data:
h_smooth = np.max([0, j - w_smooth + 1])
den_post = j - h_smooth + 1
sum_post = np.sum(y_est[h_smooth:j + 1], axis=0)
y_smooth[j, :] = (1 / float(den_post)) * sum_post
# confidence
h_max = np.max([0, j - w_max + 1])
max_p = np.max(y_smooth[h_max:j + 1, :], axis=0)
prod_max = np.prod(max_p)
conf[j] = prod_max
j += 1
return conf, y_smooth
def find_hotword(conf, win_size, frame_size, threshold):
j = 0
lw_frame_start = {}
lw_frame_end = {}
glob_frame = np.zeros(len(conf))
k = 0
while j < len(conf):
mov_wind = conf[j:j+win_size]
idx_winner = np.argmax(mov_wind)
if mov_wind[idx_winner] >= threshold:
if j + idx_winner - frame_size < 0:
fr_start = j
fr_end = j + idx_winner + frame_size + 1
elif j + idx_winner + frame_size + 1 > len(conf):
fr_end = len(conf) - 1
fr_start = j + idx_winner - frame_size
else:
fr_start = j + idx_winner - frame_size
fr_end = j + idx_winner + frame_size + 1
lw_frame_start[str(k)] = fr_start
lw_frame_end[str(k)] = fr_end
k += 1
j += win_size
return lw_frame_start, lw_frame_end, glob_frame
def get_groundtruth_demo(line_):
start_frame = {}
end_frame = {}
keyword = {}
kw_lst = line_
len_word = len(kw_lst)
i = 0
j = 0
while i < len_word:
if kw_lst[i] == 'system' or kw_lst[i] == 'systems':
keyword[str(j)] = kw_lst[i]
start_frame[str(j)] = int(kw_lst[i + 1])/100
end_frame[str(j)] = int(kw_lst[i + 2])/100
i += 3
j += 1
else:
i += 3
return start_frame, end_frame, keyword
def find_final_keyword(est_start, est_end, est_frame, act_start, act_end, ov_lap_threshold):
act_frame = est_frame
num_est_kw = len(est_start)
num_act_kw = len(act_start)
est_kw = np.zeros(num_est_kw)
act_kw = np.zeros(num_act_kw)
if num_est_kw >= num_act_kw:
est_kw = np.zeros(num_est_kw)
act_kw = np.zeros(num_est_kw)
elif num_est_kw < num_act_kw:
est_kw = np.zeros(num_act_kw)
act_kw = np.zeros(num_act_kw)
j = 0
for key1 in act_start:
act_frame[act_start[key1]:act_end[key1]] = 1
idx_act = np.where(act_frame == 1)[0]
act_kw[j] = 1
for key2 in est_start:
est_frame[est_start[key2]:est_end[key2]] = 1
idx_est = np.where(est_frame == 1)[0]
overlapping = np.intersect1d(idx_est, idx_act)
if len(overlapping)/len(act_frame) >= ov_lap_threshold:
est_kw[j] = 1
def find_sequence(input_):
j = 1
seq = {}
seq_temp = []
prev_input = 0
for i in range(len(input_)):
if input_[i] == 1:
seq_temp = np.append(seq_temp, i)
if i == len(input_) - 1:
seq[str(j)] = np.int16(seq_temp)
prev_input = input_[i]
if input_[i] == 0 and i != 0 and prev_input == 1:
prev_input = input_[i]
seq[str(j)] = np.int16(seq_temp)
seq_temp = []
j += 1
return seq