forked from ethz-asl/rovio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFeatureCoordinates.cpp
258 lines (225 loc) · 8.15 KB
/
FeatureCoordinates.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#include "rovio/FeatureCoordinates.hpp"
namespace rovio{
FeatureCoordinates::FeatureCoordinates(){
mpCamera_ = nullptr;
trackWarping_ = false;
resetCoordinates();
}
FeatureCoordinates::FeatureCoordinates(const cv::Point2f& pixel){
mpCamera_ = nullptr;
trackWarping_ = false;
resetCoordinates();
c_ = pixel;
valid_c_ = true;
}
FeatureCoordinates::FeatureCoordinates(const LWF::NormalVectorElement& nor){
mpCamera_ = nullptr;
trackWarping_ = false;
resetCoordinates();
nor_ = nor;
valid_nor_ = true;
}
FeatureCoordinates::FeatureCoordinates(const Camera* mpCamera): mpCamera_(mpCamera){
trackWarping_ = false;
resetCoordinates();
}
FeatureCoordinates::~FeatureCoordinates(){};
void FeatureCoordinates::resetCoordinates(){
valid_c_ = false;
valid_nor_ = false;
set_warp_identity();
camID_ = -1;
}
bool FeatureCoordinates::com_c() const{
if(!valid_c_){
assert(mpCamera_ != nullptr);
if(valid_nor_ && mpCamera_->bearingToPixel(nor_,c_)){
valid_c_ = true;
}
}
return valid_c_;
}
const cv::Point2f& FeatureCoordinates::get_c() const{
if(!com_c()){
std::cout << " \033[31mERROR: No valid coordinate data!\033[0m" << std::endl;
}
return c_;
}
bool FeatureCoordinates::com_nor() const{
if(!valid_nor_){
assert(mpCamera_ != nullptr);
if(valid_c_ && mpCamera_->pixelToBearing(c_,nor_)){
valid_nor_ = true;
}
}
return valid_nor_;
}
const LWF::NormalVectorElement& FeatureCoordinates::get_nor() const{
if(!com_nor()){
std::cout << " \033[31mERROR: No valid coordinate data!\033[0m" << std::endl;
}
return nor_;
}
Eigen::Matrix<double,2,2> FeatureCoordinates::get_J() const{
assert(mpCamera_ != nullptr);
if(!mpCamera_->bearingToPixel(get_nor(),c_,matrix2dTemp_)){
matrix2dTemp_.setZero();
std::cout << " \033[31mERROR: No valid coordinate data!\033[0m" << std::endl;
}
return matrix2dTemp_;
}
void FeatureCoordinates::set_c(const cv::Point2f& c, const bool resetWarp){
c_ = c;
valid_c_ = true;
valid_nor_ = false;
if(trackWarping_ && resetWarp){
valid_warp_c_ = false;
valid_warp_nor_ = false;
}
}
void FeatureCoordinates::set_nor(const LWF::NormalVectorElement& nor, const bool resetWarp){
nor_ = nor;
valid_nor_ = true;
valid_c_ = false;
if(trackWarping_ && resetWarp){
valid_warp_c_ = false;
valid_warp_nor_ = false;
}
}
bool FeatureCoordinates::com_warp_c() const{
if(!valid_warp_c_){
if(valid_warp_nor_ && com_c() && com_nor()){
matrix2dTemp_ = get_J();
warp_c_ = (matrix2dTemp_*warp_nor_).cast<float>();
valid_warp_c_ = true;
}
}
return valid_warp_c_;
}
Eigen::Matrix2f& FeatureCoordinates::get_warp_c() const{
if(!com_warp_c()){
std::cout << " \033[31mERROR: No valid warping data in get_warp_c!\033[0m" << std::endl;
}
return warp_c_;
}
bool FeatureCoordinates::com_warp_nor() const{
if(!valid_warp_nor_){
if(valid_warp_c_ && com_c() && com_nor()){
matrix2dTemp_ = get_J();
fullPivLU2d_.compute(matrix2dTemp_);
if(fullPivLU2d_.rank() == 2){
warp_nor_ = fullPivLU2d_.inverse()*warp_c_.cast<double>();
valid_warp_nor_ = true;
}
}
}
return valid_warp_nor_;
}
Eigen::Matrix2d& FeatureCoordinates::get_warp_nor() const{
if(!com_warp_nor()){
std::cout << " \033[31mERROR: No valid warping data in get_warp_nor!\033[0m" << std::endl;
}
return warp_nor_;
}
FeatureCoordinates FeatureCoordinates::get_patchCorner(const double x, const double y) const{
FeatureCoordinates temp; // TODO: avoid temp
get_nor().boxPlus(get_warp_nor()*Eigen::Vector2d(x,y),norTemp_);
temp.set_nor(norTemp_);
temp.mpCamera_ = mpCamera_;
temp.camID_ = camID_;
return temp;
}
void FeatureCoordinates::set_warp_c(const Eigen::Matrix2f& warp_c){
warp_c_ = warp_c;
valid_warp_c_ = true;
valid_warp_nor_ = false;
isWarpIdentity_ = false;
}
void FeatureCoordinates::set_warp_nor(const Eigen::Matrix2d& warp_nor){
warp_nor_ = warp_nor;
valid_warp_nor_ = true;
valid_warp_c_ = false;
isWarpIdentity_ = false;
}
void FeatureCoordinates::set_warp_identity(){
warp_c_.setIdentity();
valid_warp_c_ = true;
valid_warp_nor_ = false;
isWarpIdentity_ = true;
}
bool FeatureCoordinates::isInFront() const{
return valid_c_ || (valid_nor_ && nor_.getVec()[2] > 0);
}
bool FeatureCoordinates::isNearIdentityWarping() const{
return isWarpIdentity_ || (com_warp_c() && (get_warp_c()-Eigen::Matrix2f::Identity()).norm() < 1e-6);
}
void FeatureCoordinates::setPixelCov(const Eigen::Matrix2d& cov){
pixelCov_ = cov;
es_.compute(cov);
sigmaAngle_ = std::atan2(es_.eigenvectors()(1,0).real(),es_.eigenvectors()(0,0).real());
sigma1_ = sqrt(es_.eigenvalues()(0).real());
sigma2_ = sqrt(es_.eigenvalues()(1).real());
if(sigma1_<sigma2_){ // Get larger axis on index 1
const double temp = sigma1_;
sigma1_ = sigma2_;
sigma2_ = temp;
sigmaAngle_ += 0.5*M_PI;
eigenVector1_ = es_.eigenvectors().col(1).real();
eigenVector2_ = es_.eigenvectors().col(0).real();
} else {
eigenVector1_ = es_.eigenvectors().col(0).real();
eigenVector2_ = es_.eigenvectors().col(1).real();
}
}
void FeatureCoordinates::drawPoint(cv::Mat& drawImg, const cv::Scalar& color, const float s) const{
cv::Size size(s,s);
cv::ellipse(drawImg,get_c(),size,0,0,360,color,-1,8,0);
}
void FeatureCoordinates::drawEllipse(cv::Mat& drawImg, const cv::Scalar& color, double scaleFactor, const bool withCenterPoint) const{
if(withCenterPoint) drawPoint(drawImg,color);
cv::ellipse(drawImg,get_c(),cv::Size(std::max(static_cast<int>(scaleFactor*sigma1_+0.5),1),std::max(static_cast<int>(scaleFactor*sigma2_+0.5),1)),sigmaAngle_*180/M_PI,0,360,color,1,8,0);
}
void FeatureCoordinates::drawLine(cv::Mat& drawImg, const FeatureCoordinates& other, const cv::Scalar& color, int thickness) const{
cv::line(drawImg,get_c(),other.get_c(),color,thickness);
}
void FeatureCoordinates::drawText(cv::Mat& drawImg, const std::string& s, const cv::Scalar& color) const{
cv::putText(drawImg,s,get_c(),cv::FONT_HERSHEY_SIMPLEX, 0.4, color);
}
bool FeatureCoordinates::getDepthFromTriangulation(const FeatureCoordinates& other, const V3D& C2rC2C1, const QPD& qC2C1, FeatureDistance& d, const double minDistance){
const V3D C2v1 = qC2C1.rotate(get_nor().getVec());
const V3D C2v2 = other.get_nor().getVec();
const double a = 1.0-pow(C2v1.dot(C2v2),2.0);
if(a < 1e-6){
return false;
}
const double distance = -C2v1.dot((M3D::Identity()-C2v2*C2v2.transpose())*C2rC2C1) / a;
if(distance < minDistance){
return false;
}
d.setParameter(distance);
return true;
// Possible alternative -> investigate
// Eigen::Matrix<double,3,2> V;
// V.col(0) = -C2v1;
// V.col(1) = C2v2;
// Eigen::JacobiSVD<Eigen::Matrix<double,3,2>> svd(V, Eigen::ComputeThinU | Eigen::ComputeThinV);
// Eigen::Vector2d distances = svd.solve(C2rC2C1);
}
float FeatureCoordinates::getDepthUncertaintyTau(const V3D& C1rC1C2, const float d, const float px_error_angle){
const V3D C1fP = get_nor().getVec();
float t_0 = C1rC1C2(0);
float t_1 = C1rC1C2(1);
float t_2 = C1rC1C2(2);
float a_0 = C1fP(0) * d - t_0;
float a_1 = C1fP(1) * d - t_1;
float a_2 = C1fP(2) * d - t_2;
float t_norm = std::sqrt(t_0 * t_0 + t_1 * t_1 + t_2 * t_2);
float a_norm = std::sqrt(a_0 * a_0 + a_1 * a_1 + a_2 * a_2);
float alpha = std::acos((C1fP(0) * t_0 + C1fP(1) * t_1 + C1fP(2) * t_2) / t_norm);
float beta = std::acos(( a_0 * (-t_0) + a_1 * (-t_1) + a_2 * (-t_2) ) / (t_norm * a_norm));
float beta_plus = beta + px_error_angle;
float gamma_plus = M_PI - alpha - beta_plus; // Triangle angles sum to PI.
float d_plus = t_norm * std::sin(beta_plus) / std::sin(gamma_plus); // Law of sines.
return (d_plus - d); // Tau.
}
}