-
Notifications
You must be signed in to change notification settings - Fork 0
/
hper_repetitions_triton_noisy4.py
339 lines (247 loc) · 13.1 KB
/
hper_repetitions_triton_noisy4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 16 17:58:23 2022
@author: armi
"""
#from set_figure_defaults import FigureDefaults # Copyright Antti Vepsalainen
#import os
import matplotlib.pyplot as plt
#import datetime
import pickle
#import seaborn as sn
#import pandas as pd
import numpy as np
#from numpy.random import SeedSequence
from hper_bo import bo_sim_target
#from hper_util_bo import acq_param_builder, acq_fun_param2descr, df_data_coll_param_builder, df_data_coll_method_param2descr
#from scipy.special import erf, erfinv
#import scipy as sp
#import multiprocessing as mp
#from tqdm.contrib.concurrent import process_map
#import tqdm
#import time
#import GPyOpt
#import GPy
import psutil
#import logging
#from functools import partial
from hper_util_gp import load_GP_model
#from hper_util_repetitions import create_ternary_starting_points
from hper_util_repetitions import cg, build_filenames, set_bo_settings, set_repeat_settings, modify_filename
# Reduces memory leakage with Spyder IDE. Otherwise not necessary.
import matplotlib
matplotlib.interactive(False)
def repeated_tests(m, starting_point_candidates):#, gt_model_targetprop,
#gt_model_human):
print(' ', end='', flush=True)
# Getting % usage of virtual_memory ( 3rd field)
print('RAM memory % used:', psutil.virtual_memory()[2])
# Getting usage of virtual_memory in GB ( 4th field)
print('RAM Used (GB):', psutil.virtual_memory()[3]/1000000000, '\n')
c_eig = [0.1, 0.25]#[0.05, 0.1, 0.25]#, 1]#[0.75] # Expected information gain.
# Size of the exclusion zone in percentage points (max. 100)
c_exclz = [15]#[5, 10, 15]#, 20]#[20]
# Gradient limit. When the number is higher, the criterion picks less points. 0.05#, 0.07, 0.1, 0.2, 0.5, 0.75
c_g = list(cg(np.array([0.2, 0.6, 0.8, 0.9])))#list(cg(np.array([0.95, 0.9, 0.8])))#list(cg(np.array([0.6])))
jitters = [0.1, 0.5]
folder = '$WRKDIR/Results/20240903/Noisy/4/' # $WRKDIR/Results/ for the server
#ground_truth = [0.165, 0.04, 0.79] #[0.17, 0.03, 0.80] # From C2a paper
bo_params = {'n_repetitions': 50, # Repetitions of the whole BO process.
'n_rounds': 250, # Number of rounds in one BO.
'n_init': 3, # Number of initial sampling points.
'batch_size': 1, # Number of samples in each round.
'materials': ['CsPbI', 'MAPbI', 'FAPbI'], # Materials, i.e., search space variable names
'noise_target': 1 # Noise level of the target variable (between [0,1])
}
noise_df = 1 # Noise level of the data fusion variable (between [0,1], used only if data fusion is used)
# Give False if you don't want to save the figures.
save_figs = False
# Give False if you don't want to save disk space while saving the data.
save_disk_space = True
# Give True if you want to close the figures immediately after they are created.
close_figs = True
# Give range(bo_params['n_repetitions']) if you want to run all the repeats.
# Give specific indices if you want to run only some of them (e.g., the
# run was interrupted before).
#indices_of_repeats = range(bo_params['n_repetitions'])
indices_of_repeats = np.arange(40, 50, 1)
data_fusion_property, df_data_coll_method, acquisition_function, c_grad, c_e, jitter, fetch_file_date = set_repeat_settings(
m, c_g, c_exclz, c_eig, jitters)
if (m > -1):
###############
# Typically, one does not need to modify these inputs.
acq_fun_descr, acq_fun_params, df_data_coll_descr, df_data_coll_params = set_bo_settings(
bo_params, acquisition_function, jitter, data_fusion_property,
df_data_coll_method, noise_df, c_grad, c_e)
# Create result folders and build filenames for result files.
pickle_filenames, figure_filenames, triangle_folder = build_filenames(
folder, bo_params, acq_fun_descr, df_data_coll_descr,
fetch_file_date=fetch_file_date, m=m)
###############
all_starting_points = []
bo_examples = []
optima = []
model_optima = []
X_accum_all = []
Y_accum_all = []
data_fusion_params_all = []
surrogate_model_params_all = []
# Initialize starting points for each repeat.
for i in range(bo_params['n_repetitions']):
all_starting_points.append(
starting_point_candidates[i][0:bo_params['n_init']])
message = ('\n\nInit points method ' + str(m) +
', repetition ' + str(i) + ':\n' +
str(all_starting_points[i]))
print(message)
for i in indices_of_repeats:
# Plot the BO for the first two iterations.
if (i < 2) and (save_figs == True):
no_plots = False
else:
no_plots = True
if acq_fun_params is None:
afp = None
else:
afp = acq_fun_params.copy()
if df_data_coll_params is None:
ddcp = None
message = 'Start method ' + str(m) + ': No data fusion, repetition ' + str(i)
else:
ddcp = df_data_coll_params.copy()
message = 'Start method ' + str(m) + ': ', ddcp, ', repetition ' + str(i)
print(message)
next_suggestions, optimum, model_optimum, X_rounds, Y_rounds, X_accum, Y_accum, surrogate_model_params, data_fusion_params, bo_objects = bo_sim_target(
targetprop_data_source = gt_model_targetprop,
human_data_source = gt_model_human,
materials=bo_params['materials'],
rounds=bo_params['n_rounds'],
init_points=all_starting_points[i],
batch_size=bo_params['batch_size'],
acquisition_function=acquisition_function,
acq_fun_params=afp,
df_data_coll_params=ddcp,
no_plots=no_plots, results_folder=triangle_folder,
noise_target = bo_params['noise_target'],
seed = None, close_figs = close_figs)
# Getting % usage of virtual_memory ( 3rd field)
print('BO ended. \n')
print('RAM memory % used:', psutil.virtual_memory()[2])
optima.append(optimum)
model_optima.append(model_optimum)
X_accum_all.append(X_accum)
Y_accum_all.append(Y_accum)
if data_fusion_params is not None:
data_fusion_params_all.append(data_fusion_params)
surrogate_model_params_all.append(surrogate_model_params)
if ddcp is None:
message = 'End method ' + str(m) + ': No data fusion, repetition ' + str(i)
else:
message = 'End method ' + str(m) + ': ', ddcp, ', repetition ' + str(i)
print(message)
# Example BO objects saved only from the first two repetitions
# to save disk space.
if (save_disk_space is False) or (i < 2):
bo_examples.append([bo_objects])
filename = modify_filename(pickle_filenames[-1], i+1)
dbfile = open(filename, 'ab')
pickle.dump(bo_examples, dbfile)
dbfile.close()
if (save_disk_space is True) and (i == 1):
# The variable is not needed anymore and it tends to be large so let's delete it.
del bo_examples
# Save other results after all repetitions have been done but
# also times in between if the total number of repetitions
# is large.
if (i == (bo_params['n_repetitions']-1)) or (
(bo_params['n_repetitions'] > 10) and
(np.remainder((i+1),
int(np.floor(bo_params['n_repetitions']/10)))
== 0)):
pickle_variables = ({'optimal_samples': optima,
'model_optima': model_optima},
X_accum_all, Y_accum_all,
surrogate_model_params_all,
data_fusion_params_all) #, results, lengthscales_all,
#variances_all, max_gradients_all]
# Save the results as an backup
for j in range(len(pickle_variables)):
# Temporary filename for temp run safe-copies.
filename = modify_filename(pickle_filenames[j], i+1)
dbfile = open(filename, 'ab')
pickle.dump(pickle_variables[j], dbfile)
dbfile.close()
# Getting % usage of virtual_memory ( 3rd field)
print('RAM memory % used:', psutil.virtual_memory()[2])
print('Start next repeat...\n')
# Getting % usage of virtual_memory ( 3rd field)
print('RAM memory % used:', psutil.virtual_memory()[2])
# Getting usage of virtual_memory in GB ( 4th field)
print('RAM Used (GB):', psutil.virtual_memory()[3]/1000000000, '\n')
print('Clearing variables...\n')
del next_suggestions, optimum, model_optimum, X_rounds, Y_rounds
del X_accum, Y_accum, surrogate_model_params, data_fusion_params
del pickle_variables
if __name__ == "__main__":
###############################################################################
# MAIN SETTINGS FOR HITL BENCHMARKS
# Paths to the GPy GPRegression models that will be used for fetching source data.
path_gtmodel_targetprop = './Source_data/gt_model_traget_variable'#'./Source_data/stability_gt_model_GPR' # GPy.models.gp_regression.GPRegression
#path_gtmodel_targetprop = './Source_data/stability_model_equal_AB'
path_gtmodel_humanevals = './Source_data/visualquality/human_model_scale0to1' # GPy.models.gp_regression.GPRegression
# Number of methods to be tested.
m_total = 28
# Indices of methods to be tested. Default: range(m_total)
indices_methods = range(m_total)
# Load the starting points for BO. Every method will
# share these same init points.
# shape: (repeat_idx, init_point_idx, composition)
init_points = np.load('./Source_data/initpts.npy')
n_init_points = 10
# DISABLED
# Generate a list of seeds for repetitions (increase max_reps if you need
# more repetitions than the current max_rep value is). Every method will
# share these same init points.
#max_reps = 50
#max_init_pts = 3
#init_points = create_ternary_starting_points(
# n_reps=max_reps, n_init=max_init_pts)
init_points = np.array(init_points)
###############################################################################
plt.figure()
for ip in range(init_points.shape[1]):
plt.scatter(init_points[:, ip, 0], init_points[:, ip, 1], label = 'P' + str(ip))
plt.xlabel('$x_0$')
plt.ylabel('$x_1$')
plt.title('The ' + str(init_points.shape[1]) + ' initial points for each repetition of BO')
plt.legend()
plt.show()
print('Sanity-check of the dimensions of the initial points. Compositions should sum up to one, e.g. for the first repeat: ', np.sum(init_points[0, :, :], axis = 1))
## Number of cpus available to this job.
#try:
# ncpus = int(os.environ["SLURM_JOB_CPUS_PER_NODE"])
#except KeyError:
# ncpus = mp.cpu_count()
#
#print('Number of CPUs used: ', ncpus)
# Load source data models. The implemented code assumes these models do not
# output scaled values but data in real units.
global gt_model_targetprop
gt_model_targetprop = load_GP_model(path_gtmodel_targetprop) # Perovskite stability data (units in [px*min]), 0 px*min is fully stable and high values are instable
global gt_model_human
gt_model_human = load_GP_model(path_gtmodel_humanevals) # Human opinion on sample quality data, scale [0,1], where 1 is bad quality and 0 is high quality.
# This is a serial version of the code.
for i in indices_methods:
for j in range(1):#n_init_points):
repeated_tests(i, starting_point_candidates = init_points)#[[j],:])#,
#gt_model_targetprop = gt_model_targetprop,
#gt_model_human = gt_model_human)
'''
# This is a parallelized version of the code.
# Create a pool of workers (corresponding to Ncpus)
with mp.Pool(ncpus) as pool:
r = process_map(partial(repeated_tests,
starting_point_candidates=init_points),
indices_methods, max_workers=ncpus)
'''