forked from leggedrobotics/darknet_ros
-
Notifications
You must be signed in to change notification settings - Fork 0
/
activation_layer.c
63 lines (52 loc) · 1.67 KB
/
activation_layer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#include "activation_layer.h"
#include "utils.h"
#include "cuda.h"
#include "blas.h"
#include "gemm.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
layer make_activation_layer(int batch, int inputs, ACTIVATION activation)
{
layer l = {0};
l.type = ACTIVE;
l.inputs = inputs;
l.outputs = inputs;
l.batch=batch;
l.output = calloc(batch*inputs, sizeof(float*));
l.delta = calloc(batch*inputs, sizeof(float*));
l.forward = forward_activation_layer;
l.backward = backward_activation_layer;
#ifdef GPU
l.forward_gpu = forward_activation_layer_gpu;
l.backward_gpu = backward_activation_layer_gpu;
l.output_gpu = cuda_make_array(l.output, inputs*batch);
l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
#endif
l.activation = activation;
fprintf(stderr, "Activation Layer: %d inputs\n", inputs);
return l;
}
void forward_activation_layer(layer l, network net)
{
copy_cpu(l.outputs*l.batch, net.input, 1, l.output, 1);
activate_array(l.output, l.outputs*l.batch, l.activation);
}
void backward_activation_layer(layer l, network net)
{
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
copy_cpu(l.outputs*l.batch, l.delta, 1, net.delta, 1);
}
#ifdef GPU
void forward_activation_layer_gpu(layer l, network net)
{
copy_gpu(l.outputs*l.batch, net.input_gpu, 1, l.output_gpu, 1);
activate_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation);
}
void backward_activation_layer_gpu(layer l, network net)
{
gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
copy_gpu(l.outputs*l.batch, l.delta_gpu, 1, net.delta_gpu, 1);
}
#endif