forked from leggedrobotics/darknet_ros
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblas.c
351 lines (317 loc) · 9.18 KB
/
blas.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#include "blas.h"
#include <math.h>
#include <assert.h>
#include <float.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void reorg_cpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
{
int b,i,j,k;
int out_c = c/(stride*stride);
for(b = 0; b < batch; ++b){
for(k = 0; k < c; ++k){
for(j = 0; j < h; ++j){
for(i = 0; i < w; ++i){
int in_index = i + w*(j + h*(k + c*b));
int c2 = k % out_c;
int offset = k / out_c;
int w2 = i*stride + offset % stride;
int h2 = j*stride + offset / stride;
int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b));
if(forward) out[out_index] = x[in_index];
else out[in_index] = x[out_index];
}
}
}
}
}
void flatten(float *x, int size, int layers, int batch, int forward)
{
float *swap = calloc(size*layers*batch, sizeof(float));
int i,c,b;
for(b = 0; b < batch; ++b){
for(c = 0; c < layers; ++c){
for(i = 0; i < size; ++i){
int i1 = b*layers*size + c*size + i;
int i2 = b*layers*size + i*layers + c;
if (forward) swap[i2] = x[i1];
else swap[i1] = x[i2];
}
}
}
memcpy(x, swap, size*layers*batch*sizeof(float));
free(swap);
}
void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c)
{
int i;
for(i = 0; i < n; ++i){
c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0);
}
}
void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc)
{
int i;
for(i = 0; i < n; ++i){
if(da) da[i] += dc[i] * s[i];
if(db) db[i] += dc[i] * (1-s[i]);
ds[i] += dc[i] * (a[i] - b[i]);
}
}
void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out)
{
int stride = w1/w2;
int sample = w2/w1;
assert(stride == h1/h2);
assert(sample == h2/h1);
if(stride < 1) stride = 1;
if(sample < 1) sample = 1;
int minw = (w1 < w2) ? w1 : w2;
int minh = (h1 < h2) ? h1 : h2;
int minc = (c1 < c2) ? c1 : c2;
int i,j,k,b;
for(b = 0; b < batch; ++b){
for(k = 0; k < minc; ++k){
for(j = 0; j < minh; ++j){
for(i = 0; i < minw; ++i){
int out_index = i*sample + w2*(j*sample + h2*(k + c2*b));
int add_index = i*stride + w1*(j*stride + h1*(k + c1*b));
out[out_index] = s1*out[out_index] + s2*add[add_index];
}
}
}
}
}
void mean_cpu(float *x, int batch, int filters, int spatial, float *mean)
{
float scale = 1./(batch * spatial);
int i,j,k;
for(i = 0; i < filters; ++i){
mean[i] = 0;
for(j = 0; j < batch; ++j){
for(k = 0; k < spatial; ++k){
int index = j*filters*spatial + i*spatial + k;
mean[i] += x[index];
}
}
mean[i] *= scale;
}
}
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
{
float scale = 1./(batch * spatial - 1);
int i,j,k;
for(i = 0; i < filters; ++i){
variance[i] = 0;
for(j = 0; j < batch; ++j){
for(k = 0; k < spatial; ++k){
int index = j*filters*spatial + i*spatial + k;
variance[i] += pow((x[index] - mean[i]), 2);
}
}
variance[i] *= scale;
}
}
void l2normalize_cpu(float *x, float *dx, int batch, int filters, int spatial)
{
int b,f,i;
for(b = 0; b < batch; ++b){
for(i = 0; i < spatial; ++i){
float sum = 0;
for(f = 0; f < filters; ++f){
int index = b*filters*spatial + f*spatial + i;
sum += powf(x[index], 2);
}
sum = sqrtf(sum);
for(f = 0; f < filters; ++f){
int index = b*filters*spatial + f*spatial + i;
x[index] /= sum;
dx[index] = (1 - x[index]) / sum;
}
}
}
}
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
{
int b, f, i;
for(b = 0; b < batch; ++b){
for(f = 0; f < filters; ++f){
for(i = 0; i < spatial; ++i){
int index = b*filters*spatial + f*spatial + i;
x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
}
}
}
}
void const_cpu(int N, float ALPHA, float *X, int INCX)
{
int i;
for(i = 0; i < N; ++i) X[i*INCX] = ALPHA;
}
void mul_cpu(int N, float *X, int INCX, float *Y, int INCY)
{
int i;
for(i = 0; i < N; ++i) Y[i*INCY] *= X[i*INCX];
}
void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
{
int i;
for(i = 0; i < N; ++i) Y[i*INCY] = pow(X[i*INCX], ALPHA);
}
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
{
int i;
for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX];
}
void scal_cpu(int N, float ALPHA, float *X, int INCX)
{
int i;
for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA;
}
void fill_cpu(int N, float ALPHA, float *X, int INCX)
{
int i;
for(i = 0; i < N; ++i) X[i*INCX] = ALPHA;
}
void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT)
{
int i, j;
int index = 0;
for(j = 0; j < B; ++j) {
for(i = 0; i < NX; ++i){
if(X) X[j*NX + i] += OUT[index];
++index;
}
for(i = 0; i < NY; ++i){
if(Y) Y[j*NY + i] += OUT[index];
++index;
}
}
}
void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT)
{
int i, j;
int index = 0;
for(j = 0; j < B; ++j) {
for(i = 0; i < NX; ++i){
OUT[index++] = X[j*NX + i];
}
for(i = 0; i < NY; ++i){
OUT[index++] = Y[j*NY + i];
}
}
}
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY)
{
int i;
for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX];
}
void mult_add_into_cpu(int N, float *X, float *Y, float *Z)
{
int i;
for(i = 0; i < N; ++i) Z[i] += X[i]*Y[i];
}
void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error)
{
int i;
for(i = 0; i < n; ++i){
float diff = truth[i] - pred[i];
float abs_val = fabs(diff);
if(abs_val < 1) {
error[i] = diff * diff;
delta[i] = diff;
}
else {
error[i] = 2*abs_val - 1;
delta[i] = (diff < 0) ? 1 : -1;
}
}
}
void l1_cpu(int n, float *pred, float *truth, float *delta, float *error)
{
int i;
for(i = 0; i < n; ++i){
float diff = truth[i] - pred[i];
error[i] = fabs(diff);
delta[i] = diff > 0 ? 1 : -1;
}
}
void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
{
int i;
for(i = 0; i < n; ++i){
float t = truth[i];
float p = pred[i];
error[i] = (t) ? -log(p) : 0;
delta[i] = t-p;
}
}
void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
{
int i;
for(i = 0; i < n; ++i){
float t = truth[i];
float p = pred[i];
error[i] = -t*log(p) - (1-t)*log(1-p);
delta[i] = t-p;
}
}
void l2_cpu(int n, float *pred, float *truth, float *delta, float *error)
{
int i;
for(i = 0; i < n; ++i){
float diff = truth[i] - pred[i];
error[i] = diff * diff;
delta[i] = diff;
}
}
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY)
{
int i;
float dot = 0;
for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY];
return dot;
}
void softmax(float *input, int n, float temp, int stride, float *output)
{
int i;
float sum = 0;
float largest = -FLT_MAX;
for(i = 0; i < n; ++i){
if(input[i*stride] > largest) largest = input[i*stride];
}
for(i = 0; i < n; ++i){
float e = exp(input[i*stride]/temp - largest/temp);
sum += e;
output[i*stride] = e;
}
for(i = 0; i < n; ++i){
output[i*stride] /= sum;
}
}
void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output)
{
int g, b;
for(b = 0; b < batch; ++b){
for(g = 0; g < groups; ++g){
softmax(input + b*batch_offset + g*group_offset, n, temp, stride, output + b*batch_offset + g*group_offset);
}
}
}
void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
{
int i, j, k, b;
for(b = 0; b < batch; ++b){
for(k = 0; k < c; ++k){
for(j = 0; j < h*stride; ++j){
for(i = 0; i < w*stride; ++i){
int in_index = b*w*h*c + k*w*h + (j/stride)*w + i/stride;
int out_index = b*w*h*c*stride*stride + k*w*h*stride*stride + j*w*stride + i;
if(forward) out[out_index] = scale*in[in_index];
else in[in_index] += scale*out[out_index];
}
}
}
}
}