forked from NVIDIA/NeMo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeech_to_text_finetune.py
225 lines (186 loc) · 8.92 KB
/
speech_to_text_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script can used to fine-tune a speech-to-text model of any instance type when users want to
fine-tune an existing model without changing its core architecture but may change the tokenizer.
One can mention the pretrained model in two ways:
1) `init_from_nemo_model` or
2) `init_from_pretrained_model` in the configuration.
****************************************************************************************
This script is mainly intended for changing the dataset, optim, spec_augment, vocabulary/tokenizer of the model.
To update the model architecture in conjunction with other modifications,
it is advisable to use the primary 'speech_to_text_rnnt/ctc_*.py' script.
****************************************************************************************
Note: To create a single script for all model types, we currently only support two types of
initializations:
1) `init_from_nemo_model`, and
2) `init_from_pretrained_model`,
but not `init_from_ptl_ckpt`.
To train with prior base model tokenizer keep `model.tokenizer.update_tokenizer` as false else
make it true and provide tokenizer dir along with tokenizer type.
To fine-tune the model, use the following commands:
For initialization from a NEMO model:
```sh
python <NEMO_ROOT>/examples/asr/speech_to_text_finetune.py \
init_from_nemo_model=<path_to_nemo_model>
```
For initialization from a pretrained model:
```sh
python <NEMO_ROOT>/examples/asr/speech_to_text_finetune.py \
init_from_pretrained_model=<pretrained_model_name>
```
# Fine-Tune a Model
For documentation on fine-tuning this model, please visit:
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/configs.html#fine-tuning-configurations
"""
import time
import pytorch_lightning as pl
from omegaconf import OmegaConf
from nemo.collections.asr.models import ASRModel
from nemo.core.config import hydra_runner
from nemo.utils import logging, model_utils
from nemo.utils.exp_manager import exp_manager
from nemo.utils.get_rank import is_global_rank_zero
from nemo.utils.trainer_utils import resolve_trainer_cfg
def get_base_model(trainer, cfg):
"""
Returns the base model to be fine-tuned.
Currently supports two types of initializations:
1) `init_from_nemo_model`, and
2) `init_from_pretrained_model`.
Args:
trainer: PyTorch Lightning Trainer
cfg: config
Returns:
asr_model: ASRModel instance
"""
asr_model = None
nemo_model_path = cfg.get('init_from_nemo_model', None)
pretrained_name = cfg.get('init_from_pretrained_model', None)
if nemo_model_path is not None and pretrained_name is not None:
raise ValueError("Only pass `init_from_nemo_model` or `init_from_pretrained_model` but not both")
elif nemo_model_path is None and pretrained_name is None:
raise ValueError(
"Both `init_from_nemo_model` and `init_from_pretrained_model cannot be None, should pass atleast one of them"
)
elif nemo_model_path is not None:
asr_model = ASRModel.restore_from(restore_path=nemo_model_path)
elif pretrained_name is not None:
# Due to potential first time download of the model on the cluster, we need to make sure that only one
# rank downloads the model and the others wait for the download to finish.
num_ranks = trainer.num_devices * trainer.num_devices
if num_ranks > 1 and is_global_rank_zero():
asr_model = ASRModel.from_pretrained(model_name=pretrained_name)
else:
# Sleep on all ranks for at least 60 seconds
wait_time = int(cfg.get('exp_manager', {}).get('seconds_to_sleep', 60))
if wait_time < 60:
wait_time = 60
logging.info(f"Sleeping for at least {wait_time} seconds to wait for model download to finish.")
time.sleep(wait_time)
# restore model from cached model dir
asr_model = ASRModel.from_pretrained(model_name=pretrained_name)
asr_model.set_trainer(trainer)
return asr_model
def check_vocabulary(asr_model, cfg):
"""
Checks if the decoder and vocabulary of the model needs to be updated.
If either of them needs to be updated, it updates them and returns the updated model.
else vocabulary will be reused from the pre-trained model.
Args:
asr_model: ASRModel instance
cfg: config
Returns:
asr_model: ASRModel instance with updated decoder and vocabulary
"""
if hasattr(cfg.model.tokenizer, 'update_tokenizer') and cfg.model.tokenizer.update_tokenizer:
if hasattr(cfg.model.char_labels, 'update_labels') and cfg.model.char_labels.update_labels:
raise ValueError(
"Both `model.tokenizer.update_tokenizer` and `model.char_labels.update_labels` cannot be passed together"
)
else:
asr_model = update_tokenizer(asr_model, cfg.model.tokenizer.dir, cfg.model.tokenizer.type)
elif hasattr(cfg.model, 'char_labels') and cfg.model.char_labels.update_labels:
asr_model.change_vocabulary(new_vocabulary=cfg.model.char_labels.labels)
logging.warning("The vocabulary of the model has been updated with provided char labels.")
else:
logging.info("Reusing the vocabulary from the pre-trained model.")
return asr_model
def update_tokenizer(asr_model, tokenizer_dir, tokenizer_type):
"""
Updates the tokenizer of the model and also reinitializes the decoder if the vocabulary size
of the new tokenizer differs from that of the loaded model.
Args:
asr_model: ASRModel instance
tokenizer_dir: tokenizer directory
tokenizer_type: tokenizer type
Returns:
asr_model: ASRModel instance with updated tokenizer and decoder
"""
vocab_size = asr_model.tokenizer.vocab_size
decoder = asr_model.decoder.state_dict()
if hasattr(asr_model, 'joint'):
joint_state = asr_model.joint.state_dict()
else:
joint_state = None
if tokenizer_dir is None:
raise ValueError("dir must be specified if update_tokenizer is True")
logging.info("Using the tokenizer provided through config")
asr_model.change_vocabulary(new_tokenizer_dir=tokenizer_dir, new_tokenizer_type=tokenizer_type)
if asr_model.tokenizer.vocab_size != vocab_size:
logging.warning(
"The vocabulary size of the new tokenizer differs from that of the loaded model. As a result, finetuning will proceed with the new vocabulary, and the decoder will be reinitialized."
)
else:
asr_model.decoder.load_state_dict(decoder)
if joint_state is not None:
asr_model.joint.load_state_dict(joint_state)
return asr_model
def setup_dataloaders(asr_model, cfg):
"""
Sets up the training, validation and test dataloaders for the model.
Args:
asr_model: ASRModel instance
cfg: config
Returns:
asr_model: ASRModel instance with updated dataloaders
"""
cfg = model_utils.convert_model_config_to_dict_config(cfg)
asr_model.setup_training_data(cfg.model.train_ds)
asr_model.setup_multiple_validation_data(cfg.model.validation_ds)
if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None:
asr_model.setup_multiple_test_data(cfg.model.test_ds)
return asr_model
@hydra_runner(config_path="conf/asr_finetune", config_name="speech_to_text_finetune")
def main(cfg):
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
trainer = pl.Trainer(**resolve_trainer_cfg(cfg.trainer))
exp_manager(trainer, cfg.get("exp_manager", None))
if hasattr(cfg, 'init_from_ptl_ckpt') and cfg.init_from_ptl_ckpt is not None:
raise NotImplementedError(
"Currently for simplicity of single script for all model types, we only support `init_from_nemo_model` and `init_from_pretrained_model`"
)
asr_model = get_base_model(trainer, cfg)
# Check vocabulary type and update if needed
asr_model = check_vocabulary(asr_model, cfg)
# Setup Data
asr_model = setup_dataloaders(asr_model, cfg)
# Setup Optimizer
asr_model.setup_optimization(cfg.model.optim)
# Setup SpecAug
if hasattr(cfg.model, 'spec_augment') and cfg.model.spec_augment is not None:
asr_model.spec_augment = ASRModel.from_config_dict(cfg.model.spec_augment)
trainer.fit(asr_model)
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter