forked from voipmonitor/sniffer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dsp.cpp
1829 lines (1625 loc) · 53.8 KB
/
dsp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Mark Spencer <[email protected]>
*
* Goertzel routines are borrowed from Steve Underwood's tremendous work on the
* DTMF detector.
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief Convenience Signal Processing routines
*
* \author Mark Spencer <[email protected]>
* \author Steve Underwood <[email protected]>
*/
/*! \li \ref dsp.c uses the configuration file \ref dsp.conf
* \addtogroup configuration_file Configuration Files
*/
/*!
* \page dsp.conf dsp.conf
* \verbinclude dsp.conf.sample
*/
/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
tone_detect.c - General telephony tone detection, and specific
detection of DTMF.
Copyright (C) 2001 Steve Underwood <[email protected]>
Despite my general liking of the GPL, I place this code in the
public domain for the benefit of all mankind - even the slimy
ones who might try to proprietize my work and use it to my
detriment.
*/
/*** MODULEINFO
<support_level>core</support_level>
***/
#include <math.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <syslog.h>
#include <stdarg.h>
#include <string.h>
#include "jitterbuffer/asterisk/frame.h"
#include "dsp.h"
#define ARRAY_LEN(a) (size_t) (sizeof(a) / sizeof(0[a]))
int dspdebug = 0;
/*
#include "asterisk/format_cache.h"
#include "asterisk/channel.h"
#include "asterisk/dsp.h"
#include "asterisk/ulaw.h"
#include "asterisk/alaw.h"
#include "asterisk/utils.h"
#include "asterisk/options.h"
#include "asterisk/config.h"
*/
/*! Number of goertzels for progress detect */
enum gsamp_size {
GSAMP_SIZE_NA = 183, /*!< North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
GSAMP_SIZE_CR = 188, /*!< Costa Rica, Brazil - Only care about 425 Hz */
GSAMP_SIZE_UK = 160 /*!< UK disconnect goertzel feed - should trigger 400hz */
};
enum prog_mode {
PROG_MODE_NA = 0,
PROG_MODE_CR,
PROG_MODE_UK
};
enum freq_index {
/*! For US modes { */
HZ_350 = 0,
HZ_440,
HZ_480,
HZ_620,
HZ_950,
HZ_1400,
HZ_1800, /*!< } */
/*! For CR/BR modes */
HZ_425 = 0,
/*! For UK mode */
HZ_350UK = 0,
HZ_400UK,
HZ_440UK
};
static struct progalias {
const char *name;
enum prog_mode mode;
} aliases[] = {
{ "us", PROG_MODE_NA },
{ "ca", PROG_MODE_NA },
{ "cr", PROG_MODE_CR },
{ "br", PROG_MODE_CR },
{ "uk", PROG_MODE_UK },
};
static struct progress {
enum gsamp_size size;
int freqs[7];
} modes[] = {
{ GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } }, /*!< North America */
{ GSAMP_SIZE_CR, { 425 } }, /*!< Costa Rica, Brazil */
{ GSAMP_SIZE_UK, { 350, 400, 440 } }, /*!< UK */
};
/*!\brief This value is the minimum threshold, calculated by averaging all
* of the samples within a frame, for which a frame is determined to either
* be silence (below the threshold) or noise (above the threshold). Please
* note that while the default threshold is an even exponent of 2, there is
* no requirement that it be so. The threshold will accept any value between
* 0 and 32767.
*/
#define DEFAULT_THRESHOLD 512
enum busy_detect {
BUSY_PERCENT = 10, /*!< The percentage difference between the two last silence periods */
BUSY_PAT_PERCENT = 7, /*!< The percentage difference between measured and actual pattern */
BUSY_THRESHOLD = 100, /*!< Max number of ms difference between max and min times in busy */
BUSY_MIN = 75, /*!< Busy must be at least 80 ms in half-cadence */
BUSY_MAX = 3100 /*!< Busy can't be longer than 3100 ms in half-cadence */
};
/*! Remember last 15 units */
#define DSP_HISTORY 15
#define TONE_THRESH 10.0 /*!< How much louder the tone should be than channel energy */
#define TONE_MIN_THRESH 1e8 /*!< How much tone there should be at least to attempt */
/*! All THRESH_XXX values are in GSAMP_SIZE chunks (us = 22ms) */
enum gsamp_thresh {
THRESH_RING = 8, /*!< Need at least 150ms ring to accept */
THRESH_TALK = 2, /*!< Talk detection does not work continuously */
THRESH_BUSY = 4, /*!< Need at least 80ms to accept */
THRESH_CONGESTION = 4, /*!< Need at least 80ms to accept */
THRESH_HANGUP = 60, /*!< Need at least 1300ms to accept hangup */
THRESH_RING2ANSWER = 300 /*!< Timeout from start of ring to answer (about 6600 ms) */
};
#define MAX_DTMF_DIGITS 128
/* Basic DTMF (AT&T) specs:
*
* Minimum tone on = 40ms
* Minimum tone off = 50ms
* Maximum digit rate = 10 per second
* Normal twist <= 8dB accepted
* Reverse twist <= 4dB accepted
* S/N >= 15dB will detect OK
* Attenuation <= 26dB will detect OK
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
*/
#define DTMF_THRESHOLD 8.0e7
#define FAX_THRESHOLD 8.0e7
#define FAX_2ND_HARMONIC 2.0 /* 4dB */
#define DEF_DTMF_NORMAL_TWIST 6.31 /* 8.0dB */
#define DEF_RELAX_DTMF_NORMAL_TWIST 6.31 /* 8.0dB */
#ifdef RADIO_RELAX
#define DEF_DTMF_REVERSE_TWIST 2.51 /* 4.01dB */
#define DEF_RELAX_DTMF_REVERSE_TWIST 6.61 /* 8.2dB */
#else
#define DEF_DTMF_REVERSE_TWIST 2.51 /* 4.01dB */
#define DEF_RELAX_DTMF_REVERSE_TWIST 3.98 /* 6.0dB */
#endif
#define DTMF_RELATIVE_PEAK_ROW 6.3 /* 8dB */
#define DTMF_RELATIVE_PEAK_COL 6.3 /* 8dB */
#define DTMF_2ND_HARMONIC_ROW (relax ? 1.7 : 2.5) /* 4dB normal */
#define DTMF_2ND_HARMONIC_COL 63.1 /* 18dB */
#define DTMF_TO_TOTAL_ENERGY 42.0
#define BELL_MF_THRESHOLD 1.6e9
#define BELL_MF_TWIST 4.0 /* 6dB */
#define BELL_MF_RELATIVE_PEAK 12.6 /* 11dB */
#if defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
#error You cant use BUSYDETECT_TONEONLY together with BUSYDETECT_COMPARE_TONE_AND_SILENCE
#endif
/* The CNG signal consists of the transmission of 1100 Hz for 1/2 second,
* followed by a 3 second silent (2100 Hz OFF) period.
*/
#define FAX_TONE_CNG_FREQ 1100
#define FAX_TONE_CNG_DURATION 500
#define FAX_TONE_CNG_DB 16
/* This signal may be sent by the Terminating FAX machine anywhere between
* 1.8 to 2.5 seconds AFTER answering the call. The CED signal consists
* of a 2100 Hz tone that is from 2.6 to 4 seconds in duration.
*/
#define FAX_TONE_CED_FREQ 2100
#define FAX_TONE_CED_DURATION 2600
#define FAX_TONE_CED_DB 16
#define DEFAULT_SAMPLE_RATE 8000
/* MF goertzel size */
#define MF_GSIZE 120
/* DTMF goertzel size */
#define DTMF_GSIZE 102
/* How many successive hits needed to consider begin of a digit
* IE. Override with dtmf_hits_to_begin=4 in dsp.conf
*/
#define DEF_DTMF_HITS_TO_BEGIN 2
/* How many successive misses needed to consider end of a digit
* IE. Override with dtmf_misses_to_end=4 in dsp.conf
*/
#define DEF_DTMF_MISSES_TO_END 3
/*!
* \brief The default silence threshold we will use if an alternate
* configured value is not present or is invalid.
*/
static const int DEFAULT_SILENCE_THRESHOLD = 256;
#define CONFIG_FILE_NAME "dsp.conf"
typedef struct {
int v2;
int v3;
int chunky;
int fac;
} goertzel_state_t;
typedef struct {
int value;
int power;
} goertzel_result_t;
typedef struct
{
int freq;
int block_size;
int squelch; /* Remove (squelch) tone */
goertzel_state_t tone;
float energy; /* Accumulated energy of the current block */
int samples_pending; /* Samples remain to complete the current block */
int mute_samples; /* How many additional samples needs to be muted to suppress already detected tone */
int hits_required; /* How many successive blocks with tone we are looking for */
float threshold; /* Energy of the tone relative to energy from all other signals to consider a hit */
int hit_count; /* How many successive blocks we consider tone present */
int lhit; /* Indicates if the last processed block was a hit */
} tone_detect_state_t;
typedef struct
{
goertzel_state_t row_out[4];
goertzel_state_t col_out[4];
int hits; /* How many successive hits we have seen already */
int misses; /* How many successive misses we have seen already */
int lasthit;
int current_hit;
float energy;
int current_sample;
int mute_samples;
} dtmf_detect_state_t;
typedef struct
{
goertzel_state_t tone_out[6];
int current_hit;
int hits[5];
int current_sample;
int mute_samples;
} mf_detect_state_t;
typedef struct
{
char digits[MAX_DTMF_DIGITS + 1];
int digitlen[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
union {
dtmf_detect_state_t dtmf;
mf_detect_state_t mf;
} td;
} digit_detect_state_t;
static const float dtmf_row[] = {
697.0, 770.0, 852.0, 941.0
};
static const float dtmf_col[] = {
1209.0, 1336.0, 1477.0, 1633.0
};
static const float mf_tones[] = {
700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};
static const char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
static const char bell_mf_positions[] = "1247C-358A--69*---0B----#";
static int thresholds[THRESHOLD_MAX];
static float dtmf_normal_twist; /* AT&T = 8dB */
static float dtmf_reverse_twist; /* AT&T = 4dB */
static float relax_dtmf_normal_twist; /* AT&T = 8dB */
static float relax_dtmf_reverse_twist; /* AT&T = 6dB */
static int dtmf_hits_to_begin; /* How many successive hits needed to consider begin of a digit */
static int dtmf_misses_to_end; /* How many successive misses needed to consider end of a digit */
static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
int v1;
v1 = s->v2;
s->v2 = s->v3;
s->v3 = (s->fac * s->v2) >> 15;
s->v3 = s->v3 - v1 + (sample >> s->chunky);
if (abs(s->v3) > 32768) {
s->chunky++;
s->v3 = s->v3 >> 1;
s->v2 = s->v2 >> 1;
}
}
static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
{
int i;
for (i = 0; i < count; i++) {
goertzel_sample(s, samps[i]);
}
}
static inline float goertzel_result(goertzel_state_t *s)
{
goertzel_result_t r;
r.value = (s->v3 * s->v3) + (s->v2 * s->v2);
r.value -= ((s->v2 * s->v3) >> 15) * s->fac;
r.power = s->chunky * 2;
return (float)r.value * (float)(1 << r.power);
}
static inline void goertzel_init(goertzel_state_t *s, float freq, unsigned int sample_rate)
{
s->v2 = s->v3 = s->chunky = 0.0;
s->fac = (int)(32768.0 * 2.0 * cos(2.0 * M_PI * freq / sample_rate));
}
static inline void goertzel_reset(goertzel_state_t *s)
{
s->v2 = s->v3 = s->chunky = 0.0;
}
typedef struct {
int start;
int end;
} fragment_t;
/* Note on tone suppression (squelching). Individual detectors (DTMF/MF/generic tone)
* report fragments of the frame in which detected tone resides and which needs
* to be "muted" in order to suppress the tone. To mark fragment for muting,
* detectors call mute_fragment passing fragment_t there. Multiple fragments
* can be marked and dsp_process later will mute all of them.
*
* Note: When tone starts in the middle of a Goertzel block, it won't be properly
* detected in that block, only in the next. If we only mute the next block
* where tone is actually detected, the user will still hear beginning
* of the tone in preceeding block. This is why we usually want to mute some amount
* of samples preceeding and following the block where tone was detected.
*/
struct dsp {
//struct frame f;
int threshold;
int totalsilence;
int totalnoise;
int features;
int ringtimeout;
int busymaybe;
int busycount;
struct dsp_busy_pattern busy_cadence;
int historicnoise[DSP_HISTORY];
int historicsilence[DSP_HISTORY];
goertzel_state_t freqs[7];
int freqcount;
int gsamps;
enum gsamp_size gsamp_size;
enum prog_mode progmode;
int tstate;
int tcount;
int digitmode;
int faxmode;
int dtmf_began;
int display_inband_dtmf_warning;
float genergy;
int mute_fragments;
unsigned int sample_rate;
fragment_t mute_data[5];
digit_detect_state_t digit_state;
tone_detect_state_t cng_tone_state;
tone_detect_state_t ced_tone_state;
};
#if 0
static void mute_fragment(struct dsp *dsp, fragment_t *fragment)
{
if (dsp->mute_fragments >= ARRAY_LEN(dsp->mute_data)) {
syslog(LOG_ERR, "Too many fragments to mute. Ignoring\n");
return;
}
dsp->mute_data[dsp->mute_fragments++] = *fragment;
}
#endif
static void tone_detect_init(tone_detect_state_t *s, int freq, int duration, int amp, unsigned int sample_rate)
{
int duration_samples;
float x;
int periods_in_block;
s->freq = freq;
/* Desired tone duration in samples */
duration_samples = duration * sample_rate / 1000;
/* We want to allow 10% deviation of tone duration */
duration_samples = duration_samples * 9 / 10;
/* If we want to remove tone, it is important to have block size not
to exceed frame size. Otherwise by the moment tone is detected it is too late
to squelch it from previous frames. Block size is 20ms at the given sample rate.*/
s->block_size = (20 * sample_rate) / 1000;
periods_in_block = s->block_size * freq / sample_rate;
/* Make sure we will have at least 5 periods at target frequency for analisys.
This may make block larger than expected packet and will make squelching impossible
but at least we will be detecting the tone */
if (periods_in_block < 5) {
periods_in_block = 5;
}
/* Now calculate final block size. It will contain integer number of periods */
s->block_size = periods_in_block * sample_rate / freq;
/* tone_detect is currently only used to detect fax tones and we
do not need squelching the fax tones */
s->squelch = 0;
/* Account for the first and the last block to be incomplete
and thus no tone will be detected in them */
s->hits_required = (duration_samples - (s->block_size - 1)) / s->block_size;
goertzel_init(&s->tone, freq, sample_rate);
s->samples_pending = s->block_size;
s->hit_count = 0;
s->lhit = 0;
s->energy = 0.0;
/* We want tone energy to be amp decibels above the rest of the signal (the noise).
According to Parseval's theorem the energy computed in time domain equals to energy
computed in frequency domain. So subtracting energy in the frequency domain (Goertzel result)
from the energy in the time domain we will get energy of the remaining signal (without the tone
we are detecting). We will be checking that
10*syslog(Ew / (Et - Ew)) > amp
Calculate threshold so that we will be actually checking
Ew > Et * threshold
*/
x = pow(10.0, amp / 10.0);
s->threshold = x / (x + 1);
if(dspdebug) syslog(1, "Setup tone %d Hz, %d ms, block_size=%d, hits_required=%d\n", freq, duration, s->block_size, s->hits_required);
}
static void fax_detect_init(struct dsp *s)
{
tone_detect_init(&s->cng_tone_state, FAX_TONE_CNG_FREQ, FAX_TONE_CNG_DURATION, FAX_TONE_CNG_DB, s->sample_rate);
tone_detect_init(&s->ced_tone_state, FAX_TONE_CED_FREQ, FAX_TONE_CED_DURATION, FAX_TONE_CED_DB, s->sample_rate);
if (s->faxmode & DSP_FAXMODE_DETECT_SQUELCH) {
s->cng_tone_state.squelch = 1;
s->ced_tone_state.squelch = 1;
}
}
static void dtmf_detect_init(dtmf_detect_state_t *s, unsigned int sample_rate)
{
int i;
for (i = 0; i < 4; i++) {
goertzel_init(&s->row_out[i], dtmf_row[i], sample_rate);
goertzel_init(&s->col_out[i], dtmf_col[i], sample_rate);
}
s->lasthit = 0;
s->current_hit = 0;
s->energy = 0.0;
s->current_sample = 0;
s->hits = 0;
s->misses = 0;
}
static void mf_detect_init(mf_detect_state_t *s, unsigned int sample_rate)
{
int i;
for (i = 0; i < 6; i++) {
goertzel_init(&s->tone_out[i], mf_tones[i], sample_rate);
}
s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
s->current_sample = 0;
s->current_hit = 0;
}
static void digit_detect_init(digit_detect_state_t *s, int mf, unsigned int sample_rate)
{
s->current_digits = 0;
s->detected_digits = 0;
s->lost_digits = 0;
s->digits[0] = '\0';
if (mf) {
mf_detect_init(&s->td.mf, sample_rate);
} else {
dtmf_detect_init(&s->td.dtmf, sample_rate);
}
}
static int tone_detect(struct dsp *dsp, tone_detect_state_t *s, int16_t *amp, int samples)
{
float tone_energy;
int i;
int hit = 0;
int limit;
int res = 0;
int16_t *ptr;
short samp;
int start, end;
fragment_t mute = {0, 0};
if (s->squelch && s->mute_samples > 0) {
mute.end = (s->mute_samples < samples) ? s->mute_samples : samples;
s->mute_samples -= mute.end;
}
for (start = 0; start < samples; start = end) {
/* Process in blocks. */
limit = samples - start;
if (limit > s->samples_pending) {
limit = s->samples_pending;
}
end = start + limit;
for (i = limit, ptr = amp ; i > 0; i--, ptr++) {
samp = *ptr;
/* signed 32 bit int should be enough to square any possible signed 16 bit value */
s->energy += (int32_t) samp * (int32_t) samp;
goertzel_sample(&s->tone, samp);
}
s->samples_pending -= limit;
if (s->samples_pending) {
/* Finished incomplete (last) block */
break;
}
tone_energy = goertzel_result(&s->tone);
/* Scale to make comparable */
tone_energy *= 2.0;
s->energy *= s->block_size;
//if(dspdebug) syslog(10, "tone %d, Ew=%.2E, Et=%.2E, s/n=%10.2f\n", s->freq, tone_energy, s->energy, tone_energy / (s->energy - tone_energy));
hit = 0;
if (tone_energy > s->energy * s->threshold) {
if(dspdebug) syslog(10, "Hit! count=%d\n", s->hit_count);
hit = 1;
}
if (s->hit_count) {
s->hit_count++;
}
if (hit == s->lhit) {
if (!hit) {
/* Two successive misses. Tone ended */
s->hit_count = 0;
} else if (!s->hit_count) {
s->hit_count++;
}
}
if (s->hit_count == s->hits_required) {
if(dspdebug) syslog(1, "%d Hz done detected\n", s->freq);
res = 1;
}
s->lhit = hit;
#if 0
/* If we had a hit in this block, include it into mute fragment */
if (s->squelch && hit) {
if (mute.end < start - s->block_size) {
/* There is a gap between fragments */
mute_fragment(dsp, &mute);
mute.start = (start > s->block_size) ? (start - s->block_size) : 0;
}
mute.end = end + s->block_size;
}
#endif
/* Reinitialise the detector for the next block */
/* Reset for the next block */
goertzel_reset(&s->tone);
/* Advance to the next block */
s->energy = 0.0;
s->samples_pending = s->block_size;
amp += limit;
}
#if 0
if (s->squelch && mute.end) {
if (mute.end > samples) {
s->mute_samples = mute.end - samples;
mute.end = samples;
}
mute_fragment(dsp, &mute);
}
#endif
return res;
}
static void store_digit(digit_detect_state_t *s, char digit)
{
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digitlen[s->current_digits] = 0;
s->digits[s->current_digits++] = digit;
s->digits[s->current_digits] = '\0';
} else {
syslog(4, "Digit lost due to full buffer");
s->lost_digits++;
}
}
static int dtmf_detect(struct dsp *dsp, digit_detect_state_t *s, int16_t amp[], int samples, int squelch, int relax)
{
float row_energy[4];
float col_energy[4];
int i;
int j;
int sample;
short samp;
int best_row;
int best_col;
int hit;
int limit;
#if 0
fragment_t mute = {0, 0};
if (squelch && s->td.dtmf.mute_samples > 0) {
mute.end = (s->td.dtmf.mute_samples < samples) ? s->td.dtmf.mute_samples : samples;
s->td.dtmf.mute_samples -= mute.end;
}
#endif
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* DTMF_GSIZE is optimised to meet the DTMF specs. */
if ((samples - sample) >= (DTMF_GSIZE - s->td.dtmf.current_sample)) {
limit = sample + (DTMF_GSIZE - s->td.dtmf.current_sample);
} else {
limit = samples;
}
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
samp = amp[j];
s->td.dtmf.energy += (int32_t) samp * (int32_t) samp;
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
goertzel_sample(s->td.dtmf.row_out, samp);
goertzel_sample(s->td.dtmf.col_out, samp);
goertzel_sample(s->td.dtmf.row_out + 1, samp);
goertzel_sample(s->td.dtmf.col_out + 1, samp);
goertzel_sample(s->td.dtmf.row_out + 2, samp);
goertzel_sample(s->td.dtmf.col_out + 2, samp);
goertzel_sample(s->td.dtmf.row_out + 3, samp);
goertzel_sample(s->td.dtmf.col_out + 3, samp);
}
s->td.dtmf.current_sample += (limit - sample);
if (s->td.dtmf.current_sample < DTMF_GSIZE) {
continue;
}
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = goertzel_result(&s->td.dtmf.row_out[0]);
col_energy[0] = goertzel_result(&s->td.dtmf.col_out[0]);
for (best_row = best_col = 0, i = 1; i < 4; i++) {
row_energy[i] = goertzel_result(&s->td.dtmf.row_out[i]);
if (row_energy[i] > row_energy[best_row]) {
best_row = i;
}
col_energy[i] = goertzel_result(&s->td.dtmf.col_out[i]);
if (col_energy[i] > col_energy[best_col]) {
best_col = i;
}
}
hit = 0;
/* Basic signal level test and the twist test */
if (row_energy[best_row] >= DTMF_THRESHOLD &&
col_energy[best_col] >= DTMF_THRESHOLD &&
col_energy[best_col] < row_energy[best_row] * (relax ? relax_dtmf_reverse_twist : dtmf_reverse_twist) &&
row_energy[best_row] < col_energy[best_col] * (relax ? relax_dtmf_normal_twist : dtmf_normal_twist)) {
/* Relative peak test */
for (i = 0; i < 4; i++) {
if ((i != best_col &&
col_energy[i] * DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
(i != best_row
&& row_energy[i] * DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
break;
}
}
/* ... and fraction of total energy test */
if (i >= 4 &&
(row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY * s->td.dtmf.energy) {
/* Got a hit */
hit = dtmf_positions[(best_row << 2) + best_col];
}
}
/*
* Adapted from ETSI ES 201 235-3 V1.3.1 (2006-03)
* (40ms reference is tunable with hits_to_begin and misses_to_end)
* each hit/miss is 12.75ms with DTMF_GSIZE at 102
*
* Character recognition: When not DRC *(1) and then
* Shall exist VSC > 40 ms (hits_to_begin)
* May exist 20 ms <= VSC <= 40 ms
* Shall not exist VSC < 20 ms
*
* Character recognition: When DRC and then
* Shall cease Not VSC > 40 ms (misses_to_end)
* May cease 20 ms >= Not VSC >= 40 ms
* Shall not cease Not VSC < 20 ms
*
* *(1) or optionally a different digit recognition condition
*
* Legend: VSC The continuous existence of a valid signal condition.
* Not VSC The continuous non-existence of valid signal condition.
* DRC The existence of digit recognition condition.
* Not DRC The non-existence of digit recognition condition.
*/
/*
* Example: hits_to_begin=2 misses_to_end=3
* -------A lhit=A hits=0&1
* ------AA hits=2 current_hit=A misses=0 BEGIN A
* -----AA- misses=1 lhit=' ' hits=0
* ----AA-- misses=2
* ---AA--- misses=3 current_hit=' ' END A
* --AA---B lhit=B hits=0&1
* -AA---BC lhit=C hits=0&1
* AA---BCC hits=2 current_hit=C misses=0 BEGIN C
* A---BCC- misses=1 lhit=' ' hits=0
* ---BCC-C misses=0 lhit=C hits=0&1
* --BCC-CC misses=0
*
* Example: hits_to_begin=3 misses_to_end=2
* -------A lhit=A hits=0&1
* ------AA hits=2
* -----AAA hits=3 current_hit=A misses=0 BEGIN A
* ----AAAB misses=1 lhit=B hits=0&1
* ---AAABB misses=2 current_hit=' ' hits=2 END A
* --AAABBB hits=3 current_hit=B misses=0 BEGIN B
* -AAABBBB misses=0
*
* Example: hits_to_begin=2 misses_to_end=2
* -------A lhit=A hits=0&1
* ------AA hits=2 current_hit=A misses=0 BEGIN A
* -----AAB misses=1 hits=0&1
* ----AABB misses=2 current_hit=' ' hits=2 current_hit=B misses=0 BEGIN B
* ---AABBB misses=0
*/
if (s->td.dtmf.current_hit) {
/* We are in the middle of a digit already */
if (hit != s->td.dtmf.current_hit) {
s->td.dtmf.misses++;
if (s->td.dtmf.misses == dtmf_misses_to_end) {
/* There were enough misses to consider digit ended */
s->td.dtmf.current_hit = 0;
}
} else {
s->td.dtmf.misses = 0;
/* Current hit was same as last, so increment digit duration (of last digit) */
s->digitlen[s->current_digits - 1] += DTMF_GSIZE;
}
}
/* Look for a start of a new digit no matter if we are already in the middle of some
digit or not. This is because hits_to_begin may be smaller than misses_to_end
and we may find begin of new digit before we consider last one ended. */
if (hit != s->td.dtmf.lasthit) {
s->td.dtmf.lasthit = hit;
s->td.dtmf.hits = 0;
}
if (hit && hit != s->td.dtmf.current_hit) {
s->td.dtmf.hits++;
if (s->td.dtmf.hits == dtmf_hits_to_begin) {
store_digit(s, hit);
s->digitlen[s->current_digits - 1] = dtmf_hits_to_begin * DTMF_GSIZE;
s->td.dtmf.current_hit = hit;
s->td.dtmf.misses = 0;
}
}
/* If we had a hit in this block, include it into mute fragment */
#if 0
if (squelch && hit) {
if (mute.end < sample - DTMF_GSIZE) {
/* There is a gap between fragments */
mute_fragment(dsp, &mute);
mute.start = (sample > DTMF_GSIZE) ? (sample - DTMF_GSIZE) : 0;
}
mute.end = limit + DTMF_GSIZE;
}
#endif
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++) {
goertzel_reset(&s->td.dtmf.row_out[i]);
goertzel_reset(&s->td.dtmf.col_out[i]);
}
s->td.dtmf.energy = 0.0;
s->td.dtmf.current_sample = 0;
}
#if 0
if (squelch && mute.end) {
if (mute.end > samples) {
s->td.dtmf.mute_samples = mute.end - samples;
mute.end = samples;
}
mute_fragment(dsp, &mute);
}
#endif
return (s->td.dtmf.current_hit); /* return the debounced hit */
}
static int mf_detect(struct dsp *dsp, digit_detect_state_t *s, int16_t amp[],
int samples, int squelch, int relax)
{
float energy[6];
int best;
int second_best;
int i;
int j;
int sample;
short samp;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* 80 is optimised to meet the MF specs. */
/* XXX So then why is MF_GSIZE defined as 120? */
if ((samples - sample) >= (MF_GSIZE - s->td.mf.current_sample)) {
limit = sample + (MF_GSIZE - s->td.mf.current_sample);
} else {
limit = samples;
}
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
samp = amp[j];
goertzel_sample(s->td.mf.tone_out, samp);
goertzel_sample(s->td.mf.tone_out + 1, samp);
goertzel_sample(s->td.mf.tone_out + 2, samp);
goertzel_sample(s->td.mf.tone_out + 3, samp);
goertzel_sample(s->td.mf.tone_out + 4, samp);
goertzel_sample(s->td.mf.tone_out + 5, samp);
}
s->td.mf.current_sample += (limit - sample);
if (s->td.mf.current_sample < MF_GSIZE) {
continue;
}
/* We're at the end of an MF detection block. */
/* Find the two highest energies. The spec says to look for
two tones and two tones only. Taking this literally -ie
only two tones pass the minimum threshold - doesn't work
well. The sinc function mess, due to rectangular windowing
ensure that! Find the two highest energies and ensure they
are considerably stronger than any of the others. */
energy[0] = goertzel_result(&s->td.mf.tone_out[0]);
energy[1] = goertzel_result(&s->td.mf.tone_out[1]);
if (energy[0] > energy[1]) {
best = 0;
second_best = 1;
} else {
best = 1;
second_best = 0;
}
/*endif*/
for (i = 2; i < 6; i++) {
energy[i] = goertzel_result(&s->td.mf.tone_out[i]);
if (energy[i] >= energy[best]) {
second_best = best;
best = i;
} else if (energy[i] >= energy[second_best]) {
second_best = i;
}
}
/* Basic signal level and twist tests */
hit = 0;
if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
&& energy[best] < energy[second_best]*BELL_MF_TWIST
&& energy[best] * BELL_MF_TWIST > energy[second_best]) {
/* Relative peak test */
hit = -1;
for (i = 0; i < 6; i++) {
if (i != best && i != second_best) {
if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
/* The best two are not clearly the best */
hit = 0;
break;
}
}
}
}
if (hit) {
/* Get the values into ascending order */
if (second_best < best) {
i = best;
best = second_best;
second_best = i;
}
best = best * 5 + second_best - 1;
hit = bell_mf_positions[best];
/* Look for two successive similar results */
/* The logic in the next test is:
For KP we need 4 successive identical clean detects, with
two blocks of something different preceeding it. For anything
else we need two successive identical clean detects, with
two blocks of something different preceeding it. */
if (hit == s->td.mf.hits[4] && hit == s->td.mf.hits[3] &&
((hit != '*' && hit != s->td.mf.hits[2] && hit != s->td.mf.hits[1])||
(hit == '*' && hit == s->td.mf.hits[2] && hit != s->td.mf.hits[1] &&
hit != s->td.mf.hits[0]))) {
store_digit(s, hit);
}
}
if (hit != s->td.mf.hits[4] && hit != s->td.mf.hits[3]) {
/* Two successive block without a hit terminate current digit */
s->td.mf.current_hit = 0;
}