-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
159 lines (131 loc) · 5.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import warnings
from argparse import ArgumentParser
import pytorch_lightning as pl
import torch
from easydict import EasyDict
from loguru import logger as L
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.plugins import DDPPlugin
from pytorch_lightning.utilities import rank_zero_only
from data.datamodule import DataModule
from models.centernet_with_coam import CenterNetWithCoAttention
from models.model import Model
from utilssss.general import get_easy_dict_from_yaml_file
from zoedepth.models.builder import build_model
from zoedepth.utils.config import get_config
from torchsummary import summary
warnings.filterwarnings("ignore")
@rank_zero_only
def print_args(configs):
L.log("INFO", configs)
def train(configs, model, logger, datamodule, checkpoint_path, callbacks=None):
L.log("INFO", f"Training model.")
trainer = pl.Trainer.from_argparse_args(
configs,
logger=logger,
strategy=DDPPlugin(find_unused_parameters=False),
log_every_n_steps=1,
callbacks=callbacks,
check_val_every_n_epoch=1,
benchmark=False,
profiler="simple",
num_sanity_val_steps=0
)
trainer.fit(model, datamodule=datamodule, ckpt_path=checkpoint_path)
return trainer, trainer.checkpoint_callback.best_model_path
def test(configs, model, logger, datamodule, checkpoint_path, callbacks=None):
L.log("INFO", f"Testing model.")
tester = pl.Trainer.from_argparse_args(
configs, logger=logger, callbacks=callbacks, benchmark=True
)
tester.test(model=model, datamodule=datamodule, ckpt_path=checkpoint_path)
def get_logging_callback_manager(args):
if args.method == "centernet" or args.method == "other":
from models.centernet_with_coam import WandbCallbackManager
return WandbCallbackManager(args)
raise NotImplementedError(f"Given method ({args.method}) not implemented!")
if __name__ == "__main__":
from pyinstrument import Profiler
profiler = Profiler()
profiler.start()
parser = ArgumentParser()
parser.add_argument("--method", type=str)
parser.add_argument("--no_logging", action="store_true", default=False)
parser.add_argument("--wandb_id", type=str, default=None)
parser.add_argument("--test_from_checkpoint", type=str, default="")
parser.add_argument("--resume_checkpoint", type=str, default="")
parser.add_argument("--quick_prototype", action="store_true", default=False)
parser.add_argument("--load_weights_from", type=str, default=None)
parser.add_argument("--config_file", required=True)
parser.add_argument("--experiment_name", type=str, default=None)
args, _ = parser.parse_known_args()
if args.method == "centernet":
parser = CenterNetWithCoAttention.add_model_specific_args(parser)
elif args.method == "other":
parser = Model.add_model_specific_args(parser)
else:
raise NotImplementedError(f"Unknown method type {args.method}")
# parse configs from cmd line and config file into an EasyDict
parser = DataModule.add_data_specific_args(parser)
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
args = EasyDict(vars(args))
configs = get_easy_dict_from_yaml_file(args.config_file)
# copy cmd line configs into config file configs, overwriting any duplicates
for key in args.keys():
if args[key] is not None:
configs[key] = args[key]
elif key not in configs.keys():
configs[key] = args[key]
if configs.quick_prototype:
configs.limit_train_batches = 2
configs.limit_val_batches = 1
configs.limit_test_batches = 1
configs.max_epochs = 2
# print_args(configs)
pl.seed_everything(1, workers=True)
datamodule = DataModule(configs)
if configs.method == "centernet":
model = CenterNetWithCoAttention(configs)
else:
model = Model(configs)
logger = None
callbacks = [get_logging_callback_manager(configs)]
if not configs.no_logging:
logger = WandbLogger(
project="cyws-3d-2d",
id=configs.wandb_id,
save_dir="/disk/ygk/pycharm_project/The_Change_You_Want_to_See_main/work",
name=configs.experiment_name,
)
callbacks.append(ModelCheckpoint(save_top_k=3, monitor="val/overall_loss", mode="min",
filename='{epoch:02d}', save_last=True))
# callbacks.append(EarlyStopping(monitor="val/overall_loss", mode='min', patience=10))
# callbacks.append(ModelCheckpoint(save_top_k=4, monitor="cocoval_AP", mode="max",
# filename='{epoch:02d}-ap{cocoval_AP:.2f}', save_last=True))
trainer = None
if configs.test_from_checkpoint == "":
# train the model and store the path to the best model (as per the validation set)
# Note: multi-GPU training is supported.
trainer, test_checkpoint_path = train(
configs, model, logger, datamodule,
configs.resume_checkpoint if configs.resume_checkpoint != "" else None,
callbacks)
# test the best model exactly once on a single GPU
torch.distributed.destroy_process_group()
else:
# test the given model checkpoint
test_checkpoint_path = configs.test_from_checkpoint
profiler.stop()
print(profiler.output_text(unicode=True, color=True))
configs.gpus = 1
if trainer is None or trainer.global_rank == 0:
test(
configs,
model,
logger,
datamodule,
test_checkpoint_path if test_checkpoint_path != "" else None,
callbacks,
)