Skip to content

Latest commit

 

History

History
 
 

lab

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Google Cloud Training Lab

Data Engineering

This advanced-level quest is unique amongst the other Qwiklabs offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataproc, to Tensorflow, this quest is composed of specific labs that will put your GCP data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended.

In this lab you analyze historical weather observations using BigQuery and use weather data in conjunction with other datasets. This lab is part of a series of labs on processing scientific data.

In this lab you analyze a large (137 million rows) natality dataset using Google BigQuery and Cloud Datalab. This lab is part of a series of labs on processing scientific data.

This hands-on lab will show you how to use the HBase shell to connect to a Cloud Bigtable instance. Watch the short video Bigtable: Qwik Start - Qwiklabs Preview.

In this lab you will build an end to end machine learning solution using Tensorflow + Cloud ML Engine and leverage the cloud for distributed training and online prediction.

In this lab you will use Google Cloud Dataflow to create a Maven project with the Cloud Dataflow SDK, and run a distributed word count pipeline using the Google Cloud Platform Console.

In this lab you'll use Google Cloud Composer to automate the transform and load steps of an ETL data pipeline.

This lab shows you how to connect and manage devices using Cloud IoT Core; ingest the steam of information using Cloud Pub/Sub; process the IoT data using Cloud Dataflow; use BigQuery to analyze the IoT data.

Cloud Dataprep is Google's self-service data preparation tool. In this lab, you will learn how to use Cloud Dataprep to clean and enrich multiple datasets using a mock use case scenario of customer info and purchase history.

In this lab you build several Data Pipelines that will ingest data from the USA Babynames dataset into BigQuery, simulating a batch transformation

In this lab you will use a newly available ecommerce dataset to run some typical queries that businesses would want to know about their customers' purchasing habits.