Skip to content

Latest commit

 

History

History
114 lines (86 loc) · 2.61 KB

README.md

File metadata and controls

114 lines (86 loc) · 2.61 KB

Project Details

Pipeline based on Open-MMLAB MM-Detection project - https://github.com/open-mmlab/mmdetection


Supported Models

  • faster_rcnn_fpn50
  • faster_rcnn_fpn101
  • faster_rcnn_x101_32x4d_fpn
  • faster_rcnn_x101_64x4d_fpn
  • cascade_rcnn_fpn50
  • cascade_rcnn_fpn101
  • cascade_rcnn_x101_32x4d_fpn
  • cascade_rcnn_x101_64x4d_fpn
  • retinanet_r50_fpn
  • retinanet_r101_fpn
  • retinanet_x101_32x4d_fpn
  • retinanet_x101_64x4d_fpn
  • retinanet_ghm_r50_fpn
  • retinanet_ghm_r101_fpn
  • retinanet_ghm_x101_32x4d_fpn
  • retinanet_ghm_x101_64x4d_fpn
  • dh_faster_rcnn_fpn50
  • libra_faster_rcnn_fpn50
  • libra_faster_rcnn_fpn101
  • libra_faster_rcnn_x101_64x4d_fpn
  • libra_retinanet_r50_fpn
  • ga_faster_rcnn_x101_32x4d_fpn
  • ga_faster_rcnn_x101_64x4d_fpn
  • ga_retinanet_x101_32x4d_fpn
  • ga_retinanet_x101_64x4d_fpn
  • fovea_r50_fpn_4x4
  • fovea_r101_fpn_4x4
  • fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4
  • fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4
  • free_anchor_retinanet_r50_fpn
  • free_anchor_retinanet_r101_fpn
  • free_anchor_retinanet_x101_32x4d_fpn
  • atss_r50_fpn
  • pafpn_faster_rcnn_r50
  • faster_rcnn_r50_fpn_mdpool
  • faster_rcnn_r50_fpn_dpool


Installation

Supports

  • Python 3.6
  • Cuda 9.0, 10.0 (Other cuda version support is experimental)

cd installation

chmod +x install.sh && ./install.sh




Pipeline

  • Load Dataset

gtf.Train_Dataset(img_dir, annofile, class_file);

gtf.Dataset_Params(batch_size=2, num_workers=2);

  • Load Model

gtf.Model_Params(model_name="faster_rcnn_x101_64x4d_fpn");

  • Set Hyper Parameters

gtf.Hyper_Params(lr=0.02, momentum=0.9, weight_decay=0.0001);

gtf.Training_Params(num_epochs=2, val_interval=1);

  • Train

gtf.Train();




TODO

  • Add support for Coco-Type Annotated Datasets
  • Add support for VOC-Type Annotated Dataset
  • Test on Kaggle and Colab
  • Add validation feature & data pipeline
  • Add Optimizer selection feature
  • Enable Learning-Rate Scheduler Support
  • Enable Layer Freezing
  • Set Verbosity Levels
  • Add Project management and version control support (Similar to Monk Classification)
  • Add Graph Visualization Support
  • Enable batch proessing at inference
  • Add feature for top-k output visualization
  • Add Multi-GPU training
  • Auto correct missing or corrupt images - Currently skips them
  • Add Experimental Data Analysis Feature