- Available Backend frameworks
- Available Transfer Learning Models
- Available Layers
- Available Activation Functions
- Available Optimizers
- Available Loss functions
- Available network blocks
a) Mxnet Gluon - version 1.5.1
b) Pytorch - version 1.2.0
c) Keras - version 2.2.5 (tf - 1.12.0)
monk name | Original Name in Keras | Original Name in Pytorch | Original Name in MXNet |
---|---|---|---|
alexnet | - | alexnet | AlexNet |
darknet | - | - | Darnet53 |
densenet121 | DenseNet121 | densenet121 | DenseNet121 |
densenet161 | - | densenet161 | DenseNet161 |
densenet169 | DenseNet169 | densenet169 | DenseNet169 |
densenet201 | DenseNet201 | densenet201 | DenseNet201 |
googlenet | - | googlenet | - |
inception_v3 | InceptionV3 | inception_v3 | InceptionV3 |
inception_resnet_v2 | InceptionResNetV2 | - | - |
mnasnet0_5 | - | mnasnet0_5 | - |
mnasnet0_75 | - | mnasnet0_75 | - |
mnasnet1_0 | - | mnasnet1_0 | - |
mnasnet1_3 | - | mnasnet1_3 | - |
nasnet_mobile | NASNetMobile | - | - |
nasnet_large | NASNetLarge | - | - |
mobilenet | MobileNet | - | MobileNet1.0 |
mobilenet1.0_int8 | - | - | MobileNet1.0_int8 |
mobilenet0.75 | - | - | MobileNet0.75 |
mobilenet0.5 | - | - | MobileNet0.5 |
mobilenet0.25 | - | - | MobileNet0.25 |
mobilenetv2 | MobileNetV2 | mobilenet_v2 | MobileNetV2_1.0 |
mobilenetv2_0.75 | - | - | MobileNetV2_0.75 |
mobilenetv2_0.5 | - | - | MobileNetV2_0.5 |
mobilenetv2_0.25 | - | - | MobileNetV2_0.25 |
mobilenetv3_large | - | - | MobileNetV3_Large |
mobilenetv3_smalle | - | - | MobileNetV3_Small |
resnet18_v1 | - | resnet18 | ResNet18_v1 |
resnet34_v1 | - | resnet34 | ResNet34_v1 |
resnet50_v1 | ResNet50 | resnet50 | ResNet50_v1 |
resnet101_v1 | ResNet101 | resnet101 | ResNet101_v1 |
resnet152_v1 | ResNet152 | resnet152 | ResNet152_v1 |
resnet18_v2 | ResNet18_v2 | ||
resnet34_v2 | ResNet34_v2 | ||
resnet50_v2 | ResNet50V2 | - | ResNet50_v2 |
resnet101_v2 | ResNet101V2 | - | ResNet101_v2 |
resnet152_v2 | ResNet152V2 | - | ResNet152_v2 |
resnext50_32x4d | - | resnext50_32x4d | ResNext50_32x4d |
resnext101_32x8d | - | resnext101_32x8d | ResNext101_32x4d |
resnext101_64x4d | - | - | ResNext101_64x4d |
se_resnext50_32x4d | - | - | SE_ResNext50_32x4d |
se_resnext101_32x4d | - | - | SE_ResNext101_32x4d |
se_resnext101_64x4d | - | - | SE_ResNext101_64x4d |
shufflenet_v2_x0_5 | - | shufflenet_v2_x0_5 | - |
shufflenet_v2_x1_0 | - | shufflenet_v2_x1_0 | - |
shufflenet_v2_x1_5 | - | shufflenet_v2_x1_5 | - |
shufflenet_v2_x2_0 | - | shufflenet_v2_x2_0 | - |
squeezenet1_0 | - | squeezenet1_0 | SqueezeNet1.0 |
squeezenet1_1 | - | squeezenet1_1 | SqueezeNet1.1 |
senet_154 | - | - | SENet_154 |
vgg11 | - | vgg11 | VGG11 |
vgg11_bn | - | vgg11_bn | VGG11_bn |
vgg13 | - | vgg13 | VGG13 |
vgg13_bn | - | vgg13_bn | VGG13_bn |
vgg16 | VGG16 | vgg16 | VGG16 |
vgg16_bn | - | vgg16_bn | VGG16_bn |
vgg19 | VGG19 | vgg19 | VGG19 |
vgg19_bn | - | vgg19_bn | VGG19_bn |
wide_resnet50_2 | - | wide_resnet50_2 | - |
wide_resnet101_2 | - | wide_resnet101_2 | - |
xception | Xception | - | Xception |
Name in Monk | Name in Keras backend | Name in pytorch backend | Name in mxnet backed |
---|---|---|---|
fully_connected | Dense | Linear | Dense |
Dropout | Dropout | Dropout | Dropout |
Flatten | Flatten | Flatten | Flatten |
convolution1d | Conv1D | Conv1d | Conv1D |
convolution | Conv2D | Conv2d | Conv2D |
convolution3d | Conv3D | Conv3d | Conv3D |
transposed_convolution1d | - | ConvTranspose1d | Conv1DTranspose |
transposed_convolution | Conv2DTranspose | ConvTranspose2d | Conv2DTranspose |
transposed_convolution3d | Conv3DTranspose | ConvTranspose3d | Conv3DTranspose |
max_pooling1d | MaxPooling1D | MaxPool1d | MaxPool1D |
max_pooling | MaxPooling2D | MaxPool2d | MaxPool2D |
max_pooling3d | MaxPooling3D | MaxPool3d | MaxPool3D |
average_pooling1d | AveragePooling1D | AvgPool1d | AvgPool1D |
average_pooling | AveragePooling2D | AvgPool2d | AvgPool2D |
average_pooling3d | AveragePooling3D | AvgPool3d | AvgPool3D |
global_max_pooling1d | GlobalMaxPooling1D | AdaptiveMaxPool1d (With size = 1) | GlobalMaxPool1D |
global_max_pooling | GlobalMaxPooling2D | AdaptiveMaxPool2d (With size = 1) | GlobalMaxPool2D |
global_max_pooling3d | GlobalMaxPooling3D | AdaptiveMaxPool3d (With size = 1) | GlobalMaxPool3D |
global_average_pooling1d | GlobalAveragePooling1D | AdaptiveAvgPool1d (With size = 1) | GlobalAvgPool1D |
global_average_pooling | GlobalAveragePooling2D | AdaptiveAvgPool2d (With size = 1) | GlobalAvgPool2D |
global_average_pooling3d | GlobalAveragePooling3D | AdaptiveAvgPool3d (With size = 1) | GlobalAvgPool3D |
add | Add | Add | Add |
concatenate | Concatenate | Concatenate | Concatenate |
batchnorm | BatchNormalization | BatchNorm1d | BatchNorm |
batchnorm | - | BatchNorm2d | - |
batchnorm | - | BatchNorm3d | - |
instancenorm | - | InstanceNorm1d | InstanceNorm |
instancenorm | - | InstanceNorm2d | - |
instancenorm | - | InstanceNorm3d | - |
layernorm | - | LayerNorm | LayerNorm |
identity | activation.linear | Identity | Identity |
Name in Monk | Original name in Keras backend | Original name in pytorch backend | Original name in mxnet backend |
---|---|---|---|
relu | relu | ReLU | Activation('relu') |
sigmoid | sigmoid | Sigmoid | Activation('sigmoid') |
Tanh Shrink | tanh | TanH | Activation('tanh') |
softplus | softplus | Softplus | Activation('softrelu') |
softsign | softsign | Softsign | Activation('softsign') |
elu | elu | ELU | ELU |
gelu | - | - | GELU |
prelu | PReLU | PReLU | PReLU |
selu | selu | SELU | SELU |
swish | - | - | Swish |
leakyrelu | LeakyReLU | LeakyReLU | LeakyReLU |
hardshrink | - | HardShrink | - |
hardtanh | - | HardTanh | - |
logsigmoid | - | LogSigmoid | - |
relu6 | - | ReLU6 | - |
rrelu | - | RReLU | - |
celu | - | CELU | - |
softshrink | - | Softshrink | - |
tanhshrink | - | Tanhshrink | - |
threshold | - | Threshold | - |
softmin | - | Softmin | - |
softmax | - | Softmax | - |
logsoftmax | - | LogSoftmax | - |
hardsigmoid | hard_sigmoid | - | - |
thresholded_relu | ThresholdedReLU | - | - |
Name in Monk | Original Name in Keras backend | Original Name in pytorch backend | Original Name in mxnet backend |
---|---|---|---|
optimizer_adadelta | Adadelta | Adadelta | AdaDelta |
optimizer_adagrad | Adagrad | Adagrad | AdaGrad |
optimizer_adam | Adam | Adam | Adam |
optimizer_adamax | Adamax | Adamax | Adamax |
optimizer_nesterov_sgd | SGD (With nesterov) | SGD (With nesterov) | NAG |
optimizer_nesterov_adam | Nadam | - | Nadam |
optimizer_rmsprop | RMSprop | RMSprop | RMSProp |
optimizer_momentum_rmsprop | - | RMSprop (With momentum) | RMSprop (With momentum) |
optimizer_sgd | SGD | SGD | SGD |
optimizer_signum | - | - | Signum |
optimizer_adamw | - | AdamW | - |
Name in Monk | Original Name in keras backend | Original Name in pytorch backend | Original Name in mxnet backend |
---|---|---|---|
loss_l2 | mean_squared_error | MSELoss | L2Loss |
loss_l1 | mean_absolute_error | L1Loss | L1Loss |
loss_squared_hinge | squared_hinge | SoftMarginLoss (not exactly) | SquaredHingeLoss |
loss_hinge | hinge | HingeEmbeddingLoss | HingeLoss |
loss_huber | huber_loss | SmoothL1Loss | HuberLoss |
loss_softmax_crossentropy | - | CrossEntropyLoss | SoftmaxCrossEntropyLoss |
loss_crossentropy | categorical_crossentropy | CrossEntropyLoss | SoftmaxCrossEntropyLoss |
loss_multimargin | categorical_hinge | MultiMarginLoss | - |
loss_multilabel_margin | - | MultiLabelMarginLoss | - |
loss_binary_crossentropy | binary_crossentropy | BCELoss | - |
loss_sigmoid_binary_crossentropy | - | BCEWithLogitsLoss | SigmoidBinaryCrossEntropyLoss |
loss_kldiv | kullback_leibler_divergence | KLDivLoss | KLDivLoss |
loss_poison_nll | - | PoissonNLLLoss | PoissonNLLLoss |
Block | Name in Monk |
---|---|
Resnet V1 Block With Downsampling | resnet_v1_block |
Resnet V1 Block Without Downsampling | resnet_v1_block |
Resnet V2 Block With Downsampling | resnet_v2_block |
Resnet V2 Block Without Downsampling | resnet_v2_block |
Resnet V1 Bottleneck Block With Downsampling | resnet_v1_bottleneck_block |
Resnet V1 Bottleneck Block Without Downsampling | resnet_v1_bottleneck_block |
Resnet V2 Bottleneck Block With Downsampling | resnet_v2_bottleneck_block |
Resnet V2 Bottleneck Block Without Downsampling | resnet_v2_bottleneck_block |
Resnext Block With Downsampling | resnext_block |
Resnext Block Without Downsampling | resnext_block |
Mobilenet V2 Linear BottleNeck Block | mobilenet_v2_linear_block |
Mobilenet V2 Inverted Linear BottleNeck Block | mobilenet_v2_inverted_linear_block |
Squeezenet Fire Block | squeezenet_fire_block |
Densenet Dense Block | densenet_dense_block |
Inception A Block | inception_a_block |
Inception B Block | inception_b_block |
Inception C Block | inception_c_block |
Inception D Block | inception_d_block |
Inception E Block | inception_e_block |