forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
93 lines (69 loc) · 3.11 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Datasets used in examples."""
import array
import gzip
import os
from os import path
import struct
import urllib.request
import numpy as np
_DATA = "/tmp/jax_example_data/"
def _download(url, filename):
"""Download a url to a file in the JAX data temp directory."""
if not path.exists(_DATA):
os.makedirs(_DATA)
out_file = path.join(_DATA, filename)
if not path.isfile(out_file):
urllib.request.urlretrieve(url, out_file)
print("downloaded {} to {}".format(url, _DATA))
def _partial_flatten(x):
"""Flatten all but the first dimension of an ndarray."""
return np.reshape(x, (x.shape[0], -1))
def _one_hot(x, k, dtype=np.float32):
"""Create a one-hot encoding of x of size k."""
return np.array(x[:, None] == np.arange(k), dtype)
def mnist_raw():
"""Download and parse the raw MNIST dataset."""
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
def parse_labels(filename):
with gzip.open(filename, "rb") as fh:
_ = struct.unpack(">II", fh.read(8))
return np.array(array.array("B", fh.read()), dtype=np.uint8)
def parse_images(filename):
with gzip.open(filename, "rb") as fh:
_, num_data, rows, cols = struct.unpack(">IIII", fh.read(16))
return np.array(array.array("B", fh.read()),
dtype=np.uint8).reshape(num_data, rows, cols)
for filename in ["train-images-idx3-ubyte.gz", "train-labels-idx1-ubyte.gz",
"t10k-images-idx3-ubyte.gz", "t10k-labels-idx1-ubyte.gz"]:
_download(base_url + filename, filename)
train_images = parse_images(path.join(_DATA, "train-images-idx3-ubyte.gz"))
train_labels = parse_labels(path.join(_DATA, "train-labels-idx1-ubyte.gz"))
test_images = parse_images(path.join(_DATA, "t10k-images-idx3-ubyte.gz"))
test_labels = parse_labels(path.join(_DATA, "t10k-labels-idx1-ubyte.gz"))
return train_images, train_labels, test_images, test_labels
def mnist(permute_train=False):
"""Download, parse and process MNIST data to unit scale and one-hot labels."""
train_images, train_labels, test_images, test_labels = mnist_raw()
train_images = _partial_flatten(train_images) / np.float32(255.)
test_images = _partial_flatten(test_images) / np.float32(255.)
train_labels = _one_hot(train_labels, 10)
test_labels = _one_hot(test_labels, 10)
if permute_train:
perm = np.random.RandomState(0).permutation(train_images.shape[0])
train_images = train_images[perm]
train_labels = train_labels[perm]
return train_images, train_labels, test_images, test_labels