# install dependency
bash install_dependency.sh
# install libCacheSim
bash install_libCacheSim.sh
# plot miss ratio over sizes
python3 plot_mrc_size.py \
--tracepath ../data/twitter_cluster52.csv --trace-format csv \
--trace-format-params="time-col=1,obj-id-col=2,obj-size-col=3,delimiter=,,obj-id-is-num=1" \
--algos=fifo,lru,lecar,s3fifo
# plot miss ratio over time
python3 plot_mrc_time.py \
--tracepath ../data/twitter_cluster52.csv --trace-format csv \
--trace-format-params="time-col=1,obj-id-col=2,obj-size-col=3,delimiter=,,obj-id-is-num=1" \
--algos=fifo,lru,lecar,s3fifo \
--report-interval 120
Plot data are generated using traceAnalyzer
using
./bin/traceAnalyzer /path/trace trace_format --common
Then we can plot access pattern, request rate, size, reuse, and popularity using the following commands:
python3 traceAnalysis/access_pattern.py ${dataname}.access
python3 traceAnalysis/req_rate.py ${dataname}.reqRate_w300
python3 traceAnalysis/size.py ${dataname}.size
python3 traceAnalysis/reuse.py ${dataname}.reuse
python3 traceAnalysis/popularity.py ${dataname}.popularity
# plot more expensive analysis
python3 traceAnalysis/size_heatmap.py ${dataname}.sizeWindow_w300
python3 traceAnalysis/popularity_decay.py ${dataname}.popularityDecay_w300
python3 traceAnalysis/reuse_heatmap.py ${dataname}.reuseWindow_w300