-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__Preprocessing.py
61 lines (52 loc) · 1.78 KB
/
__Preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
from numpy.lib.npyio import save
class Preprocessing:
@staticmethod
def read_dataset():
letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'-', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
f = open(r'danger_domain/danger_domain_z.txt', encoding='UTF-8')
raw_text = f.readlines()
raw_text = [line.lower().strip('\n')[:-4] for line in raw_text]
text_string = ''
sum = 0
idx = 0
for line in raw_text:
text_string += line.strip()
sum += len(line)
idx += 1
text = list()
for char in text_string:
text.append(char)
text = [char for char in text if char in letters]
# print("average = ", int(sum / idx))
return text
@staticmethod
def create_dictionary(text):
char_to_idx = dict()
idx_to_char = dict()
idx = 0
for char in text:
if char not in char_to_idx.keys():
char_to_idx[char] = idx
idx_to_char[idx] = char
idx += 1
return char_to_idx, idx_to_char
@staticmethod
def build_sequences_target(text, char_to_idx, window):
x = list()
y = list()
for i in range(len(text)):
try:
sequence = text[i:i + window]
sequence = [char_to_idx[char] for char in sequence]
target = text[i + window]
target = char_to_idx[target]
x.append(sequence)
y.append(target)
except:
pass
x = np.array(x)
y = np.array(y)
return x, y