-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_net.py
142 lines (114 loc) · 5.86 KB
/
eval_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import logging
import time
import torch.utils.data
from models.common import post_process_output
from utils.dataset_processing import evaluation, grasp
from utils.data import get_dataset
from models.lgpnet import LGPNet
logging.basicConfig(level=logging.INFO)
def parse_args():
parser = argparse.ArgumentParser(description='Evaluate LGPNet')
# Network
parser.add_argument('--network', type=str, help='Path to saved network to evaluate')
parser.add_argument('--layers', type=int, default=50, help='Layers number')
# Dataset & Data & Training
parser.add_argument('--dataset', type=str, help='Dataset Name ("cornell" or "jacquard")')
parser.add_argument('--dataset-path', type=str, help='Path to dataset')
parser.add_argument('--use-depth', type=int, default=1, help='Use Depth image for evaluation (1/0)')
parser.add_argument('--use-rgb', type=int, default=0, help='Use RGB image for evaluation (0/1)')
parser.add_argument('--augment', action='store_true', help='Whether data augmentation should be applied')
parser.add_argument('--ds-rotate', type=float, default=0.0,
help='Shift the start point of the dataset to use a different test/train split')
parser.add_argument('--start-split', type=float, default=0.0, help='The start of the split for train dataset')
parser.add_argument('--end-split', type=float, default=0.2, help='The end of the split for train dataset')
parser.add_argument('--ds-shuffle', action='store_true', help='Turning OW to IW')
parser.add_argument('--num-workers', type=int, default=4, help='Dataset workers')
parser.add_argument('--n-grasps', type=int, default=1, help='Number of grasps to consider per image')
parser.add_argument('--iou-eval', action='store_true', help='Compute success based on IoU metric.')
parser.add_argument('--jacquard-output', action='store_true', help='Jacquard-dataset style output')
parser.add_argument('--vis', action='store_true', help='Visualise the network output')
parser.add_argument('--gpu-idx', type=str, default='0', help='GPU index')
args = parser.parse_args()
if args.jacquard_output and args.dataset != 'jacquard':
raise ValueError('--jacquard-output can only be used with the --dataset jacquard option.')
if args.jacquard_output and args.augment:
raise ValueError('--jacquard-output can not be used with data augmentation.')
return args
if __name__ == '__main__':
args = parse_args()
device = torch.device("cuda:{}".format(args.gpu_idx))
net = torch.load(args.network)
net = net.to(device)
# Load Dataset
logging.info('Loading {} Dataset...'.format(args.dataset.title()))
Dataset = get_dataset(args.dataset)
test_dataset = Dataset(
args.dataset_path,
start_split=args.start_split,
end_split=args.end_split,
ds_rotate=args.ds_rotate,
is_val=True,
ds_shuffle=args.ds_shuffle,
random_rotate=args.augment,
random_zoom=args.augment,
include_depth=args.use_depth,
include_rgb=args.use_rgb
)
split_dataset_method = 'OW'
if args.ds_shuffle:
split_dataset_method = 'IW'
logging.info('Split dataset with {} method'.format(split_dataset_method))
test_data = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
shuffle=False,
num_workers=args.num_workers
)
logging.info('Done')
results = {'correct': 0, 'failed': 0}
if args.jacquard_output:
jo_fn = args.network + '_jacquard_output.txt'
with open(jo_fn, 'w') as f:
pass
logging.info('Evaluating model...')
net.eval()
start_time = time.time()
failed_idx = []
with torch.no_grad():
for idx, (x, y, didx, rot, zoom) in enumerate(test_data):
xc = x.to(device)
yc = [yi.to(device) for yi in y]
lossd = net.compute_loss(xc, yc)
q_img, ang_img, width_img = post_process_output(lossd['pred']['pos'], lossd['pred']['cos'],
lossd['pred']['sin'], lossd['pred']['width'])
if args.iou_eval:
s = evaluation.calculate_iou_match(q_img, ang_img, test_data.dataset.get_gtbb(didx, rot, zoom),
no_grasps=args.n_grasps,
grasp_width=width_img,
)
if s:
results['correct'] += 1
else:
failed_idx.append(idx)
results['failed'] += 1
if args.jacquard_output:
grasps = grasp.detect_grasps(q_img, ang_img, width_img=width_img, no_grasps=1)
with open(jo_fn, 'a') as f:
for g in grasps:
f.write(test_data.dataset.get_jname(didx) + '\n')
f.write(g.to_jacquard(scale=1024 / 300) + '\n')
if args.vis:
evaluation.save_output(test_data.dataset.get_rgb(didx, rot, zoom, normalise=False),
test_data.dataset.get_depth(didx, rot, zoom), q_img,
ang_img, no_grasps=args.n_grasps, grasp_width_img=width_img,
idx_fig=idx, dataset=args.dataset, args=args)
avg_time = (time.time() - start_time) / len(test_data)
logging.info('Average evaluation time per image: {}ms'.format(avg_time * 1000))
if args.iou_eval:
logging.info('IOU Results: %d/%d = %f' % (results['correct'],
results['correct'] + results['failed'],
results['correct'] / (results['correct'] + results['failed'])))
if args.jacquard_output:
logging.info('Jacquard output saved to {}'.format(jo_fn))
print(failed_idx)