-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathedge_api.py
65 lines (53 loc) · 2.27 KB
/
edge_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import sys, getopt
from server_func import start_client
from net.monitor_client import MonitorClient
import multiprocessing
import warnings
warnings.filterwarnings("ignore")
"""
边缘设备api,用于启动边缘设备,进行前半部分计算后,将中间数据传递给云端设备
client 启动指令 python edge_api.py -i 127.0.0.1 -p 9999 -d cpu -t easy_net
"-t", "--type" 模型种类参数 "alex_net" "vgg_net" "easy_net" "inception" "inception_v2"
"-i", "--ip" 服务端 ip地址
"-p", "--port" 服务端 开放端口
"-d", "--device" 是否开启客户端GPU计算 cpu or cuda
"""
if __name__ == '__main__':
try:
opts, args = getopt.getopt(sys.argv[1:], "t:i:p:d:", ["type=","ip=","port=","device_on="])
except getopt.GetoptError:
print('input argv error')
sys.exit(2)
# 处理 options中以元组的方式存在(opt,arg)
model_type = ""
ip,port = "127.0.0.1",999
device = "cpu"
for opt, arg in opts:
if opt in ("-t", "--type"):
model_type = arg
elif opt in ("-i", "--ip"):
ip = arg
elif opt in ("-p", "--port"):
port = int(arg)
elif opt in ("-d", "--device"):
device = arg
if device == "cuda" and torch.cuda.is_available() == False:
raise RuntimeError("本机器上不可以使用cuda")
# 开启:带宽监测客户端
# 如果没有两个设备测试的条件 可以使用下面的方式 将带宽自定义
# bandwidth_value = 10 #Mbps
bandwidth_value = multiprocessing.Value('d', 0.0)
monitor_cli = MonitorClient(ip=ip, bandwidth_value=bandwidth_value)
monitor_cli.start()
# 等待子进程结束后获取到带宽数据
monitor_cli.join()
print(f"get bandwidth value : {bandwidth_value.value} MB/s")
# step2 准备input数据
x = torch.rand(size=(1, 3, 224, 224), requires_grad=False)
x = x.to(device)
# 部署阶段 - 选择优化分层点
# upload_bandwidth = bandwidth_value.value # MBps
upload_bandwidth = 10 # MBps 为确保程序正确运行 这里设置为10;实机运行使用上面那行
# 使用云边协同的方式进行模拟
start_client(ip, port, x, model_type, upload_bandwidth, device)