forked from soumith/convnet-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepcl_benchmark.py
164 lines (144 loc) · 5.16 KB
/
deepcl_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/python
# This is intended to target inclusion in soumith's benchmarks as
# https://github.com/soumith/convnet-benchmarks
from __future__ import print_function
import os
import sys
import time
import array
import random
import PyDeepCL
numEpochs = 10
runs = [
{
'inputPlanes': 3,
'outputPlanes': 96,
'filterSize': 11,
'inputSize': 128,
'batchSize': 128,
},
{
'inputPlanes': 64,
'outputPlanes': 128,
'filterSize': 9,
'inputSize': 64,
'batchSize': 128,
},
{
'inputPlanes': 128,
'outputPlanes': 128,
'filterSize': 9,
'inputSize': 32,
'batchSize': 128,
},
{
'inputPlanes': 128,
'outputPlanes': 128,
'filterSize': 7,
'inputSize': 16,
'batchSize': 128,
},
{
'inputPlanes': 384, # num input planes
'outputPlanes': 384, # num output planes
'filterSize': 3, # filter size
'inputSize': 13, # input size
'batchSize': 128, # batchsize
}
]
def writeResults( resultsLine ):
f = open('results.txt', 'a')
f.write( resultsLine + '\n' )
f.close()
def time_layer( numEpochs, batchSize, inputPlanes, inputSize, outputPlanes, filterSize ):
print('building network...')
net = PyDeepCL.NeuralNet( inputPlanes, inputSize )
# net.addLayer( PyDeepCL.ConvolutionalMaker().numFilters(inputPlanes)
# .filterSize(1).padZeros().biased().linear() ) # this is just to make sure that gradient needs to be
# # backproped through next layer
net.addLayer( PyDeepCL.ForceBackpropMaker() ) # this forces the next layer to backprop gradients to
# this layer
net.addLayer( PyDeepCL.ConvolutionalMaker().numFilters(outputPlanes)
.filterSize(filterSize).biased().linear() )
net.addLayer( PyDeepCL.FullyConnectedMaker().numPlanes(1).imageSize(1) )
net.addLayer( PyDeepCL.SoftMaxMaker() )
print( net.asString() )
images = array.array( 'f', [0] * (batchSize*inputPlanes*inputSize*inputSize) )
for i in range( batchSize*inputPlanes*inputSize*inputSize ):
images[i] = random.random() - 0.5
# grad = array.array('f',[0] * batchSize * outputPlanes * (inputSize - filterSize + 1) )
# for i in range( batchSize * outputPlanes * (inputSize - filterSize + 1) ):
# grad[i] = random.random() - 0.5
labels = array.array('i',[0] * batchSize )
print('warming up...')
#try:
net.setBatchSize(batchSize)
# warm up forward
for i in range(8):
last = time.time()
net.propagate( images )
now = time.time()
print(' warm up propagate all-layer time', now - last )
last = now
net.backPropFromLabels( 0.001, labels )
now = time.time()
print(' warm up backprop all-layer time', now - last )
last = now
layer = net.getLayer(2)
print('running forward prop timings:')
for i in range(numEpochs):
layer.propagate()
now = time.time()
print('forward layer total time', now - last )
print('forward layer average time', ( now - last ) / float(numEpochs) )
writeResults( layer.asString() + ', forward: ' + str( ( now - last ) / float(numEpochs) * 1000 ) + 'ms' )
print('warm up backwards again')
layer.backProp(0.001)
layer.backProp(0.001)
print('warm up backwards done. start timings:')
now = time.time()
last = now
for i in range(numEpochs):
layer.backProp(0.001)
now = time.time()
print('backwar layer total time', now - last )
print('backwar layer average time', ( now - last ) / float(numEpochs) )
writeResults( layer.asString() + ', backward: ' + str( ( now - last ) / float(numEpochs) * 1000 ) + 'ms' )
last = now
def time_run(fn):
times = []
fn() # warm-up call, outputPlanest timed
for _ in range(repeat):
start = time.time()
for _ in range(number):
fn()
times.append((time.time() - start) / number)
return min(times)
def parse_custom_config(s):
# parses a custom configuration string of the format:
# iAxB,kCxD,bE where A: input channels, B: input size,
# C: output channels, D: kernel size, E: batchsize,
# (with G, being optional)
run = {'batchSize': 128 }
defs = {'i': ['inputPlanes', 'inputSize'],
'k': ['outputPlanes', 'filterSize'],
'b': ['batchSize'] }
for part in s.split(','):
p, args = part[0], map(int, part[1:].split('x'))
run.update(zip(defs[p], args))
return run
def go(runs):
for run in runs:
for key in run.keys(): # copy key values into function scope
go.__globals__[key] = run[key]
print( '' )
print( 'CONFIG: ', run )
time_layer(numEpochs, batchSize, inputPlanes, inputSize,
outputPlanes, filterSize )
if __name__ == '__main__':
if len(sys.argv) > 1:
# allow specifying the runs on command line, 1-indexed (i.e., 1 2 5)
runs = [runs[int(r) - 1] for r in sys.argv[1:] if r[0] != 'i']
# allow specifying custom configurations on command line (e.g., i3x80x15,k32x3x7,b256)
runs.extend([parse_custom_config(r) for r in sys.argv[1:] if r[0] == 'i'])
go(runs)