forked from zcash/zcash
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpow.cpp
156 lines (128 loc) · 5.28 KB
/
pow.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "pow.h"
#include "arith_uint256.h"
#include "chain.h"
#include "chainparams.h"
#include "crypto/equihash.h"
#include "primitives/block.h"
#include "streams.h"
#include "uint256.h"
#include "util.h"
#include "sodium.h"
unsigned int GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock, const Consensus::Params& params)
{
unsigned int nProofOfWorkLimit = UintToArith256(params.powLimit).GetCompact();
// Genesis block
if (pindexLast == NULL)
return nProofOfWorkLimit;
// Find the first block in the averaging interval
const CBlockIndex* pindexFirst = pindexLast;
arith_uint256 bnTot {0};
for (int i = 0; pindexFirst && i < params.nPowAveragingWindow; i++) {
arith_uint256 bnTmp;
bnTmp.SetCompact(pindexFirst->nBits);
bnTot += bnTmp;
pindexFirst = pindexFirst->pprev;
}
// Check we have enough blocks
if (pindexFirst == NULL)
return nProofOfWorkLimit;
arith_uint256 bnAvg {bnTot / params.nPowAveragingWindow};
return CalculateNextWorkRequired(bnAvg, pindexLast->GetMedianTimePast(), pindexFirst->GetMedianTimePast(), params);
}
unsigned int CalculateNextWorkRequired(arith_uint256 bnAvg,
int64_t nLastBlockTime, int64_t nFirstBlockTime,
const Consensus::Params& params)
{
// Limit adjustment step
// Use medians to prevent time-warp attacks
int64_t nActualTimespan = nLastBlockTime - nFirstBlockTime;
LogPrint("pow", " nActualTimespan = %d before dampening\n", nActualTimespan);
nActualTimespan = params.AveragingWindowTimespan() + (nActualTimespan - params.AveragingWindowTimespan())/4;
LogPrint("pow", " nActualTimespan = %d before bounds\n", nActualTimespan);
if (nActualTimespan < params.MinActualTimespan())
nActualTimespan = params.MinActualTimespan();
if (nActualTimespan > params.MaxActualTimespan())
nActualTimespan = params.MaxActualTimespan();
// Retarget
const arith_uint256 bnPowLimit = UintToArith256(params.powLimit);
arith_uint256 bnNew {bnAvg};
bnNew /= params.AveragingWindowTimespan();
bnNew *= nActualTimespan;
if (bnNew > bnPowLimit)
bnNew = bnPowLimit;
/// debug print
LogPrint("pow", "GetNextWorkRequired RETARGET\n");
LogPrint("pow", "params.AveragingWindowTimespan() = %d nActualTimespan = %d\n", params.AveragingWindowTimespan(), nActualTimespan);
LogPrint("pow", "Current average: %08x %s\n", bnAvg.GetCompact(), bnAvg.ToString());
LogPrint("pow", "After: %08x %s\n", bnNew.GetCompact(), bnNew.ToString());
return bnNew.GetCompact();
}
bool CheckEquihashSolution(const CBlockHeader *pblock, const CChainParams& params)
{
unsigned int n = params.EquihashN();
unsigned int k = params.EquihashK();
// Hash state
crypto_generichash_blake2b_state state;
EhInitialiseState(n, k, state);
// I = the block header minus nonce and solution.
CEquihashInput I{*pblock};
// I||V
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss << I;
ss << pblock->nNonce;
// H(I||V||...
crypto_generichash_blake2b_update(&state, (unsigned char*)&ss[0], ss.size());
bool isValid;
EhIsValidSolution(n, k, state, pblock->nSolution, isValid);
if (!isValid)
return error("CheckEquihashSolution(): invalid solution");
return true;
}
bool CheckProofOfWork(uint256 hash, unsigned int nBits, const Consensus::Params& params)
{
bool fNegative;
bool fOverflow;
arith_uint256 bnTarget;
bnTarget.SetCompact(nBits, &fNegative, &fOverflow);
// Check range
if (fNegative || bnTarget == 0 || fOverflow || bnTarget > UintToArith256(params.powLimit))
return error("CheckProofOfWork(): nBits below minimum work");
// Check proof of work matches claimed amount
if (UintToArith256(hash) > bnTarget)
return error("CheckProofOfWork(): hash doesn't match nBits");
return true;
}
arith_uint256 GetBlockProof(const CBlockIndex& block)
{
arith_uint256 bnTarget;
bool fNegative;
bool fOverflow;
bnTarget.SetCompact(block.nBits, &fNegative, &fOverflow);
if (fNegative || fOverflow || bnTarget == 0)
return 0;
// We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256
// as it's too large for a arith_uint256. However, as 2**256 is at least as large
// as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1,
// or ~bnTarget / (nTarget+1) + 1.
return (~bnTarget / (bnTarget + 1)) + 1;
}
int64_t GetBlockProofEquivalentTime(const CBlockIndex& to, const CBlockIndex& from, const CBlockIndex& tip, const Consensus::Params& params)
{
arith_uint256 r;
int sign = 1;
if (to.nChainWork > from.nChainWork) {
r = to.nChainWork - from.nChainWork;
} else {
r = from.nChainWork - to.nChainWork;
sign = -1;
}
r = r * arith_uint256(params.nPowTargetSpacing) / GetBlockProof(tip);
if (r.bits() > 63) {
return sign * std::numeric_limits<int64_t>::max();
}
return sign * r.GetLow64();
}