forked from ucsb-seclab/Neurlux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention_train_document2.py
260 lines (204 loc) · 10.1 KB
/
attention_train_document2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import keras
from config import *
from Attention import *
from sklearn.metrics import accuracy_score, precision_recall_curve, roc_curve, f1_score, confusion_matrix, recall_score, precision_score
from keras.layers import Conv1D, MaxPooling1D, CuDNNLSTM
import sys
benign_pickle = "ember_lastline_feature_extract/ember_lastline_all_benign.pickle"
malicious_pickle = "ember_lastline_feature_extract/ember_lastline_all_malicious.pickle"
result_path = "doc_attention2"
global FEATURE
global file_tag
FEATURE = None
file_tag = 'document_classifier'
feature_list = ['reg', 'file', 'net', 'dll', 'api', 'mutex']
batch_size=32
learning_rate=.0001
epochs=7
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = []
self.accuracy = []
self.val_accuracy = []
self.val_losses = []
def on_batch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
self.accuracy.append(logs.get('acc'))
self.val_losses.append(logs.get('val_loss'))
self.val_accuracy.append(logs.get('val_acc'))
class Metrics(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self._data = []
def on_epoch_end(self, batch, logs={}):
X_val, y_val = self.validation_data[0], self.validation_data[1]
y_predict = np.asarray(model.predict(X_val))
# precision recall is [precision], [recall], [thresh]
# roc is [tpr], [fpr], [thresh]
self._data.append({
'val_recall': recall_score(y_val, y_predict.round()),
'val_precision': precision_score(y_val, y_predict.round()),
'val_accuracy': accuracy_score(y_val, y_predict.round()),
'val_precision_recall_curve': precision_recall_curve(y_val, y_predict),
'val_roc_curve': roc_curve(y_val, y_predict),
'val_f1_score': f1_score(y_val, y_predict.round()),
'confusion_matrix': confusion_matrix(y_val, y_predict.round())
})
return
def load_data(benign_pickle, malicious_pickle, balance=False, limit=None):
benign = pd.read_pickle(benign_pickle)
malicious = pd.read_pickle(malicious_pickle)
df1 = pd.DataFrame(benign)
df1['label'] = 0
df2 = pd.DataFrame(malicious)
df2['label'] = 1
if balance or limit:
if balance:
min_len = min(len(df1), len(df2))
else:
min_len = max(len(df1), len(df2))
if limit is not None:
min_len = min(min_len, limit)
# limit it (use sample to sort it first)
df1 = df1.sample(frac=1)[:min_len]
df2 = df2.sample(frac=1)[:min_len]
# concat and rearrange
df = pd.concat([df1, df2], ignore_index=True)
df = df.sample(frac=1)
def add_all(row):
row_reg = row['reg'][:min(reg_maxlen, len(row['reg']))]
row_file = row['file'][:min(file_maxlen, len(row['file']))]
row_net = row['net'][:min(net_maxlen, len(row['net']))]
row_api = row['api'][:min(api_maxlen, len(row['api']))]
row_mutex = row['mutex'][:min(mutex_maxlen, len(row['mutex']))]
row_dll = row['dll'][:min(dll_maxlen, len(row['dll']))]
#return row['reg'] + ' <reg>' + row['file'] + ' <file>' + row['net'] + ' <net>' + row['api'] + ' <api>' + row['mutex'] + ' <mutex>'
return row_reg + ' <reg>' + row_file + ' <file>' + row_net + ' <net>' + row_api + ' <api>' + row_mutex + ' <mutex>' + row_dll + ' <dll>'
df['all'] = df.apply(add_all, axis=1)
x = df['all']
print("Created x")
# grab feature and label
y = df['label']
return x, y, benign, malicious
def tokenize_data(x, y):
tokenizer = Tokenizer(num_words=10000)
tokenizer.fit_on_texts(x)
x = tokenizer.texts_to_sequences(x)
vocab_size = len(tokenizer.word_index) + 1
return x, y, vocab_size, tokenizer
def split_data(x, y):
x = pad_sequences(x, padding='post', maxlen=maxlen)
X_train, X_test, y_train, y_test = train_test_split(
np.array(x), np.array(y), test_size=0.25, random_state=1000)
return X_train, X_test, y_train, y_test
def get_model(vocab_size):
inp = Input(shape=(maxlen, ))
x = Embedding(input_dim=vocab_size, output_dim=embedding_dim,
input_length=maxlen)(inp)
print("Input to LSTM dim", x.shape)
x = Conv1D(filters=100, kernel_size=4, padding='same', activation='relu')(x)
x = MaxPooling1D(pool_size=4)(x)
#x = Bidirectional(LSTM(32, return_sequences=True, dropout=0.25,
# recurrent_dropout=0.25))(x)
x = Bidirectional(CuDNNLSTM(32, return_sequences=True))(x)
# x shape will be (?, ?, 2x32) (bidirectional doubles the first arg of LSTM)
print("Input to Attention shape:", x.shape)
x, attention_out = Attention(name='attention_vec')(x)
print("Output of Attention shape:", attention_out.shape)
x = Dense(10, activation="relu")(x)
x = Dropout(0.25)(x)
x = Dense(1, activation="sigmoid")(x)
model = Model(inputs=inp, outputs=x)
attention_model = Model(inputs=inp, outputs=attention_out)
return model, attention_model
def train(model, attention_model, X_train, X_test, y_train, y_test):
opt = keras.optimizers.Adam(lr=learning_rate)
model.compile(loss='binary_crossentropy', optimizer=opt,
metrics=['accuracy'])
loss_history=LossHistory()
metrics=Metrics()
ckpt = ModelCheckpoint("{}/att_{}_checkpoint".format(result_path, file_tag), monitor='val_loss', verbose=1,
save_best_only=True, mode='min')
early = EarlyStopping(monitor="val_loss", mode="min", patience=5)
history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs,
verbose=1, validation_data=(X_test, y_test), callbacks=[ckpt, early, loss_history, metrics])
model.save("{}/att_{}.model".format(result_path, file_tag))
attention_model.save("{}/att_{}_att.model".format(result_path, file_tag))
model.summary()
data = {}
data['metrics'] = metrics._data
data['acc_history'] = loss_history.accuracy
data['loss_history'] = loss_history.losses
with open("{}/{}_att_acc_data.pickle".format(result_path, file_tag), "wb") as f:
pickle.dump(data, f)
return history
# with CustomObjectScope({'Attention': Attention()}):
def get_reverse_token_map(tokenizer):
reverse_token_map = dict(map(reversed, tokenizer.word_index.items()))
return reverse_token_map
def get_word_importances(text, tokenizer, model, attention_model):
reverse_token_map = get_reverse_token_map(tokenizer)
lt = tokenizer.texts_to_sequences([text])
x = pad_sequences(lt, maxlen=maxlen)
p = model.predict(x)
att = attention_model.predict(x)
return p, [(reverse_token_map.get(word), importance) for word, importance in zip(x[0], att[0]) if word in reverse_token_map]
def plot_history(history):
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
plt.savefig('{}/att_{}.png'.format(result_path, file_tag))
def retest(tokenizer, model, pickle_benign, pickle_malicious, save_tag):
x, y, benign, malicious = load_data(pickle_benign, pickle_malicious, balance=True, limit=1000)
print("len retest {}".format(len(x)))
x = tokenizer.texts_to_sequences(x)
x = pad_sequences(x, padding='post', maxlen=maxlen)
#is_model_present = os.path.isfile('model.hdf5')
y_predict = model.predict(x)
data = {}
data['recall'] = recall_score(y, y_predict.round())
data['precision'] = precision_score(y, y_predict.round())
data['accuracy'] = accuracy_score(y, y_predict.round())
data['f1_score'] = f1_score(y, y_predict.round())
print("RETEST")
print(data)
tn, fp, fn, tp = confusion_matrix(y, y_predict.round()).ravel()
print("tn: {} fp: {}\nfn: {} tp: {}".format(tn, fp, fn, tp))
print("END RETEST")
with open("{}/{}_{}_retest".format(result_path,file_tag,save_tag), "w") as f:
f.write(str(data) + "\n" + "tn fp fn tp\n" + str((tn, fp, fn, tp)) + "\n")
with open("{}/{}_{}_retest.pickle".format(result_path,file_tag,save_tag), "wb") as f:
pickle.dump((data,tn, fp, fn, tp), f)
if __name__ == '__main__':
x, y, benign, malicious = load_data(benign_pickle, malicious_pickle, balance=True)
x, y, vocab_size, tokenizer = tokenize_data(x, y)
with open('{}/{}_tokenizer.pickle'.format(result_path, file_tag), 'wb') as f:
pickle.dump(tokenizer, f)
X_train, X_test, y_train, y_test = split_data(x, y)
# model = load_model('model.hdf5')
model, attention_model = get_model(vocab_size)
history = train(model, attention_model,
X_train, X_test, y_train, y_test)
# evaluate
retest(tokenizer, model, 'ember_cuckoo_feature_extract/ember_cuckoo_all_benign.pickle', 'ember_cuckoo_feature_extract/ember_cuckoo_all_malicious.pickle', 'test_sandbox')
retest(tokenizer, model, 'wild_lastline_feature_extract/wild_lastline_all_benign.pickle', 'wild_lastline_feature_extract/wild_lastline_all_malicious.pickle', 'test_dataset')
retest(tokenizer, model, 'wild_cuckoo_feature_extract/wild_cuckoo_all_benign.pickle', 'wild_cuckoo_feature_extract/wild_cuckoo_all_malicious.pickle', 'test_dataset_and_sandbox')
#malicious_attention = []
#test_mal = malicious = malicious[:1000]
#for mal in test_mal:
# p, important = get_word_importances(
# mal, tokenizer, model, attention_model)
# malicious_attention.append(important)
#with open('{}/malicious_attention_{}.pickle'.format(result_path, file_tag), 'wb') as f:
# pickle.dump(malicious_attention, f)
train_loss, train_accuracy = model.evaluate(X_train, y_train, verbose=True)
print("Training Accuracy: {:.4f}".format(train_accuracy))
loss, accuracy = model.evaluate(X_test, y_test, verbose=True)
print("Testing Accuracy: {:.4f}".format(accuracy))
plot_history(history)
with open("{}/{}_overall".format(result_path, file_tag), "w") as f:
f.write("Training Accuracy: {:.4f}\n".format(train_accuracy))
f.write("Testing Accuracy: {:.4f}\n".format(accuracy))