forked from ucsb-seclab/Neurlux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
new_train_mutex.py
266 lines (213 loc) · 7.83 KB
/
new_train_mutex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import keras
import pickle
import IPython
import numpy as np
import pandas as pd
import keras_metrics
import plotly.offline as py
import keras.layers as layers
import plotly.graph_objs as go
import matplotlib.pyplot as plt
from keras.models import Model
from sklearn.manifold import TSNE
from keras.models import Sequential
from keras.layers import Concatenate
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.wrappers.scikit_learn import KerasClassifier
from keras.preprocessing.text import text_to_word_sequence
from keras.layers import Conv1D, Embedding, Dropout, Flatten
from keras.layers import Dense, Activation, Conv1D, GlobalMaxPooling1D
from sklearn.model_selection import RandomizedSearchCV, train_test_split
from sklearn.metrics import classification_report, precision_score, recall_score
from keras.layers import Dense, Input, GlobalMaxPooling1D, concatenate, MaxPooling1D
from sklearn.metrics import accuracy_score, precision_recall_curve, roc_curve, f1_score
py.init_notebook_mode(connected=True)
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = []
self.accuracy = []
self.val_accuracy = []
self.val_losses = []
def on_batch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
self.accuracy.append(logs.get('acc'))
self.val_losses.append(logs.get('val_loss'))
self.val_accuracy.append(logs.get('val_acc'))
class Metrics(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self._data = []
def on_epoch_end(self, batch, logs={}):
X_val, y_val = self.validation_data[0], self.validation_data[1]
y_predict = np.asarray(model.predict(X_val))
# precision recall is [precision], [recall], [thresh]
# roc is [tpr], [fpr], [thresh]
self._data.append({
'val_recall': recall_score(y_val, y_predict.round()),
'val_precision': precision_score(y_val, y_predict.round()),
'val_accuracy': accuracy_score(y_val, y_predict.round()),
'val_precision_recall_curve': precision_recall_curve(y_val, y_predict),
'val_roc_curve': roc_curve(y_val, y_predict),
'val_f1_score': f1_score(y_val, y_predict.round()),
})
#IPython.embed()
return
epochs = 10
embedding_dim = 200
maxlen = 5000
output_file = 'data/output.txt'
file_tag = "mutex"
benign = pd.read_pickle('mutex_benign.pickle')
malicious = pd.read_pickle('mutex_malicious.pickle')
benign_text = []
for i in benign:
sen = ", ".join(x for x in i)
benign_text.append(sen)
mal_text = []
for i in malicious:
sen = ", ".join(x for x in i)
mal_text.append(sen)
df1 = pd.DataFrame(benign_text, columns=['data'])
df1['label'] = 0
df2 = pd.DataFrame(mal_text, columns=['data'])
df2['label'] = 1
df = pd.concat([df1, df2], ignore_index=True)
df = df.sample(frac=1)
x = df['data']
y = df['label']
#for k, v in sorted(tokenizer.word_counts.items(), key = lambda x:-x[1]):
tokenizer_benign = Tokenizer(num_words=3000)
tokenizer_mal = Tokenizer(num_words=3000)
tokenizer_benign.fit_on_texts(df1['data'])
tokenizer_mal.fit_on_texts(df2['data'])
most_common_benign = []
most_common_mal = []
count = 0
for k, v in sorted(tokenizer_benign.word_counts.items(), key = lambda x:-x[1]):
most_common_benign.append(k)
count += 1
if count >= 200:
break
count = 0
for k, v in sorted(tokenizer_mal.word_counts.items(), key = lambda x:-x[1]):
most_common_mal.append(k)
count += 1
if count >= 200:
break
tokenizer = Tokenizer(num_words=10000)
tokenizer.fit_on_texts(x)
x = tokenizer.texts_to_sequences(x)
vocab_size = len(tokenizer.word_index) + 1
print(vocab_size)
x = pad_sequences(x, padding='post', maxlen=maxlen)
print(len(x))
X_train, X_test, y_train, y_test = train_test_split(
np.array(x), np.array(y), test_size=0.25, random_state=1000)
model = Sequential()
model.add(layers.Embedding(vocab_size, embedding_dim, input_length=maxlen))
model.add(layers.Conv1D(512, 5, activation='relu'))
model.add(Dropout(0.5))
model.add(layers.Conv1D(256, 5, activation='relu'))
model.add(Dropout(0.5))
model.add(layers.Conv1D(128, 5, activation='relu'))
model.add(Dropout(0.5))
model.add(layers.GlobalMaxPooling1D())
#model.add(layers.Dense(10, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
model.summary()
loss_history=LossHistory()
metrics=Metrics()
history = model.fit(np.array(X_train), np.array(y_train),
epochs=10,
verbose=True,
validation_data=(np.array(X_test), np.array(y_test)),
batch_size=10,
callbacks=[loss_history, metrics])
data = {}
data['metrics'] = metrics._data
data['acc_history'] = loss_history.accuracy
data['loss_history'] = loss_history.losses
with open("{}_acc_data.pickle".format(file_tag), "wb") as f:
pickle.dump(data, f)
#IPython.embed()
conv_embds = model.layers[0].get_weights()[0]
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
def tsne_plot(conv_embds):
print(len(conv_embds))
"Creates and TSNE model and plots it"
labels = []
tokens = []
for word in most_common_benign:
#print("index:", index)
print("conv_embed size:", len(conv_embds))
tokens.append(conv_embds[tokenizer.word_index.get(word)])
labels.append(word)
tsne_model = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=23)
new_values = tsne_model.fit_transform(tokens)
x = []
y = []
for value in new_values:
x.append(value[0])
y.append(value[1])
plt.figure(figsize=(16, 16))
for i in range(len(x)):
plt.scatter(x[i],y[i], color='red')
# plt.annotate(labels[i],
# xy=(x[i], y[i]),
# xytext=(5, 2),
# textcoords='offset points',
# ha='right',
# va='bottom')
plt.show()
return plt
def tsne_plot2(conv_embds, plt):
"Creates and TSNE model and plots it"
labels = []
tokens = []
for word in most_common_mal:
# print("index:", index)
# print("conv_embed size:", len(conv_embds))
tokens.append(conv_embds[tokenizer.word_index.get(word)])
labels.append(word)
tsne_model = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=23)
new_values = tsne_model.fit_transform(tokens)
x = []
y = []
for value in new_values:
x.append(value[0])
y.append(value[1])
for i in range(len(x)):
plt.scatter(x[i],y[i], color='blue')
# plt.annotate(labels[i],
# xy=(x[i], y[i]),
# xytext=(5, 2),
# textcoords='offset points',
# ha='right',
# va='bottom')
plt.savefig('{}_tsne_most_common.png'.format(file_tag))
plt.clf()
conv_embds = model.layers[0].get_weights()
plt = tsne_plot(conv_embds[0])
tsne_plot2(conv_embds[0], plt)
loss, accuracy = model.evaluate(X_train, y_train, verbose=True)
print("Training Accuracy: {:.4f}".format(accuracy))
loss, accuracy = model.evaluate(X_test, y_test, verbose=True)
print("Testing Accuracy: {:.4f}".format(accuracy))
#print('hist')
#print(history.history['acc'])
#print(history.history['val_acc'])
def plot_history(history):
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.savefig('{}_cnn_history.png'.format(file_tag))
plt.clf()
plot_history(history)
model.save("{}_trained.model".format(file_tag))