-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_summary.R
214 lines (166 loc) · 8.72 KB
/
data_summary.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#' data.info.collect
#'
#' calculate effect size and corresponding variance.
#'
#' *Note!*
#' This function is not clean. Some of the calculated statistics are not used
#' in current manuscript.
#' Such statistics will be marked with `IGNORE!`
#'
#'
#' @param Y gene expression matrix (normalized to 10k)
#' @param celltype cell type info of cells
#'
#' @return All necessary sample level summary statistics
#' @import DelayedArray
#' @importFrom stats var
#' @importFrom matrixTests row_wilcoxon_twosample
#'
data.info.collect <- function(Y, celltype){
gene.num <- nrow(Y) # gene number
unique.celltypes <- sort(unique(celltype)) # names of cell types
celltype.num <- length(unique.celltypes) # number of cell types, NOT number of cells
gene.names <- rownames(Y) # gene names
res <- list() # store result
matrix.tmp <- matrix(NA,nrow = gene.num, ncol = celltype.num) # create a matrix
colnames(matrix.tmp) <- unique.celltypes # column is cell type
rownames(matrix.tmp) <- gene.names # row is genes
# create null variables to store different statistics
res[['expr']] = res[['expr_var']] = res[['expr_se']] =
res[['log_expr']] = res[['log_expr_se']] =
res[['expr_remain']] = res[['expr_remain_var']] = res[['expr_remain_se']] =
res[['log_expr_remain']] = res[['log_expr_remain_se']] =
res[['effect']] = res[['effect_se']] =
res[['effect_2']] = res[['effect_2_se']] =
res[['wilcox.stat']] = res[['wilcox.pval']] =
res[['nonzero_rate']] = res[['nonzero_exprmean']] =
res[['nonzero_log_expr']] <- matrix.tmp
# do the loop for each cell type
for(ct.ix in unique.celltypes){
cell.ix <- (celltype == ct.ix) # index for target cell type
expr.ct.tmp <- Y[,cell.ix] # gene expression of cells from target cell type
expr.remain.tmp <- Y[,!cell.ix] # gene expression of cells from non-targer cell types
res[['expr']][,ct.ix] <- DelayedArray::rowMeans(expr.ct.tmp) # mean expression of target cell type
res[['expr_var']][,ct.ix] <- apply(expr.ct.tmp,1,var) # variance of expression for target cell type
res[['expr_se']][,ct.ix] <- sqrt( res[['expr_var']][,ct.ix] / sum(cell.ix)) # sample error for target cell type
res[['log_expr']][,ct.ix] <- log2(res[['expr']][,ct.ix] + 1) # log2 transformed gene expression + psudo count 1
res[['log_expr_se']][,ct.ix] <-
sqrt(res[['expr_var']][,ct.ix]/(sum(cell.ix)*((res[['expr']][,ct.ix]+1)*log(2))^2))
res[['expr_remain']][,ct.ix] <- DelayedArray::rowMeans(expr.remain.tmp) # IGNORE! mean expression of non-target cells
res[['expr_remain_var']][,ct.ix] <- apply(expr.remain.tmp,1,var) # IGNORE! variance of expression for non-target cell types
res[['expr_remain_se']][,ct.ix] <- sqrt( res[['expr_remain_var']][,ct.ix] / sum(!cell.ix)) # GNORE! sample error for non-target cell type
res[['log_expr_remain']][,ct.ix] <- log2(res[['expr_remain']][,ct.ix] + 1) # IGNORE! log2 transformed expression + psduo count 1
res[['log_expr_remain_se']][,ct.ix] <-
sqrt(res[['expr_remain_var']][,ct.ix]/(sum(!cell.ix)*((res[['expr_remain']][,ct.ix]+1)*log(2))^2)) # GNORE!
res[['effect_2']][,ct.ix] <- res[['log_expr']][,ct.ix] - res[['log_expr_remain']][,ct.ix] # GNORE!
res[['effect_2_se']][,ct.ix] <- sqrt( res[['log_expr_remain_se']][,ct.ix]^2 + # IGNORE!
res[['log_expr_se']][,ct.ix]^2 )
# wilcoxon rank sum test one vs. others (a common used/traditional way)
test.res <- row_wilcoxon_twosample(Y[,cell.ix], Y[,!cell.ix], alternative = 'greater')
res[['wilcox.stat']][,ct.ix] = test.res[,'statistic']
res[['wilcox.pval']][,ct.ix] = test.res[,'pvalue']
nonzero.ix.tmp <- expr.ct.tmp != 0
res[['nonzero_rate']][,ct.ix] <- apply(nonzero.ix.tmp,1,mean) # IGNORE!drop out rate, not used here, but for previous data explore
res[['nonzero_exprmean']][,ct.ix] <- res[['expr']][,ct.ix] / res[['nonzero_rate']][,ct.ix] # GNORE! mean of non-zero expression
res[['nonzero_log_expr']][,ct.ix] <- log2(res[['nonzero_exprmean']][,ct.ix]+1) # IGNORE!
}
### Loop again, for each cell type calculate effect size (a.k.a log2 fold change defined in Eq 2 in manuscript)
### and its corresponding variance defined in Eq 6 in Supplementary file
### (looks like Eq6 is not correct, it should be summation + not minus - between the two terms) ####
for(ct.ix in unique.celltypes){
res[['effect']][,ct.ix] <- res[['log_expr']][,ct.ix] -
log2(rowMeans(res[['expr']][,! unique.celltypes %in% ct.ix],na.rm = T) +1)
se.part1 <- res[['log_expr_se']][,ct.ix]^2
se.part2 <- 1/(log(2)*(rowSums(res[['expr']][,! unique.celltypes %in% ct.ix],na.rm = T) +
(celltype.num-1)))^2 * rowSums(res[['expr_se']][,! unique.celltypes %in% ct.ix]^2)
res[['effect_se']][,ct.ix] <- sqrt(se.part1 + se.part2) ### I took a square here, in following analysis we need variance
}
res[['nonzero_exprmean']][is.na(res[['nonzero_exprmean']])] <- 0 # just avoid na
res[['nonzero_log_expr']][is.na(res[['nonzero_log_expr']])] <- 0 # just avoid na
return(res)
}
#' Re-organize the data generated by \code{data.info.collect}
#' Convert the sublists containing necessary stats into arrays
#'
#' @param marker.info The data generated by \code{data.info.collect}.
#'
#' @return A list containing converted assays
#' @importFrom cli cli_text
#' @importFrom stats p.adjust
#'
data.info.reorganize <- function(marker.info){
cli_text("Re-organizing data info...")
nGenes <- nrow(marker.info[[1]]$expr)
nCT <- ncol(marker.info[[1]]$expr)
nInds <- length(marker.info)
array.tmp <- array(NA, dim=c(nGenes, nCT, nInds))
dimnames(array.tmp) <- list(rownames(marker.info[[1]]$expr),
colnames(marker.info[[1]]$expr),
names(marker.info))
expr_info = expr_var_info =
log_expr_info = log_expr_se_info =
expr_remain_info = expr_remain_var_info =
log_expr_remain_info = log_expr_remain_se_info =
effect_info = effect_se_info =
effect_2_info = effect_2_se_info =
wilcox.stat_info = wilcox.pval_info = wilcox.fdr_info =
nonzero_rate_info = nonzero_exprmean_info =
nonzero_log_expr_info <- array.tmp
subjects.tmp <- names(marker.info)
for(sub.ix in subjects.tmp){
expr_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$expr)
expr_var_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$expr_var)
log_expr_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$log_expr)
log_expr_se_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$log_expr_se)
expr_remain_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$expr_remain)
expr_remain_var_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$expr_remain_var)
log_expr_remain_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$log_expr_remain)
log_expr_remain_se_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$log_expr_remain_se)
effect_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$effect)
effect_se_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$effect_se)
effect_2_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$effect_2)
effect_2_se_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$effect_2_se)
wilcox.stat_info[,,sub.ix] <-
as.matrix(marker.info[[sub.ix]]$wilcox.stat)
wilcox.pval_info[,,sub.ix] <- as.matrix(marker.info[[sub.ix]]$wilcox.pval)
nonzero_rate_info[,,sub.ix] <- as.matrix(marker.info[[sub.ix]]$nonzero_rate)
nonzero_exprmean_info[,,sub.ix] <- as.matrix(marker.info[[sub.ix]]$nonzero_exprmean)
nonzero_log_expr_info[,,sub.ix] <- as.matrix(marker.info[[sub.ix]]$nonzero_log_expr)
for(cell.ix in 1:nCT){
wilcox.fdr_info[, cell.ix, sub.ix] <-
p.adjust(c(wilcox.pval_info[, cell.ix, sub.ix]), 'fdr')
}
}
res <- list('expr_info'=expr_info,
'expr_var_info' = expr_var_info,
'log_expr_info' = log_expr_info,
'log_expr_se_info' = log_expr_se_info,
'expr_remain_info'=expr_remain_info,
'expr_remain_var_info' = expr_remain_var_info,
'log_expr_remain_info' = log_expr_remain_info,
'log_expr_remain_se_info' = log_expr_remain_se_info,
'effect_info' = effect_info,
'effect_se_info' = effect_se_info,
'effect_2_info' = effect_2_info,
'effect_2_se_info' = effect_2_se_info,
'wilcox.stat_info' = wilcox.stat_info,
'wilcox.pval_info' = wilcox.pval_info,
'wilcox.fdr_info' = wilcox.fdr_info,
'nonzero_rate_info' = nonzero_rate_info,
'nonzero_exprmean_info' = nonzero_exprmean_info,
'nonzero_log_expr_info' = nonzero_log_expr_info)
cli_text("Finish data info re-organization.")
return(res)
}