-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscCTS.Rd
80 lines (65 loc) · 2.18 KB
/
scCTS.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/scCTS.R
\name{scCTS}
\alias{scCTS}
\title{The main function of scCTS. It performs DE analysis on normalized (not
log-normalized) count matrix.}
\usage{
scCTS(
sce,
use.raw = FALSE,
use.norm.rep = NULL,
subject.rep = "subject",
celltype.rep = "celltype",
log.input = FALSE,
log.base = 2,
effect_thres = 0.01,
maxiter = 1000,
tol = 0.001,
min.cutoff = 0.05,
max.cutoff = 0.95,
numCores = NULL,
verbose = FALSE
)
}
\arguments{
\item{sce}{A \code{SingleCellExperiment} object. Should contain normalized
count matrix, subject and cell type info.}
\item{use.raw}{Whether to use the raw counts. If \code{TRUE}, the raw counts
are then normalized by \pkg{scCTS}.}
\item{use.norm.rep}{Which count matrix should be used. Default is the matrix
accessed by \code{normcounts()}.}
\item{subject.rep}{The name of column that stores subject labels of cells in
\code{colData} slot.}
\item{celltype.rep}{The name of column that stores cell type labels in
\code{colData} slot.}
\item{log.input}{Whether the input expression matrix is log-transformed.}
\item{log.base}{The base of log-transformation.}
\item{effect_thres}{Threshold for filtering genes with negative mean
(\eqn{m_{gk}} in Eq 3 in manuscript)}
\item{maxiter}{Maximum iteration number}
\item{tol}{EM stop control}
\item{min.cutoff}{Remove samples with extreme small log fold change for
robust estimation. Default is quantile 0.05.}
\item{max.cutoff}{Remove samples with extreme large log fold change for
robust estimation. Default is quantile 0.95.}
\item{numCores}{Number of cores to use. Default is the number of all possible
cores minus 1.}
\item{verbose}{Whether to print details when the function is running.}
}
\value{
A list containing lists for every cell type. Each list contains
posterior probability and estimates of parameters for a cell type.
}
\description{
The main function of scCTS. It performs DE analysis on normalized (not
log-normalized) count matrix.
}
\examples{
# load the simulated data
data(sim.sce)
# run scCTS
res <- scCTS(sim.sce, use.raw = TRUE,
subject.rep='subject', celltype.rep='celltype',
numCores=2)
}