forked from MulongXie/UIED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_classes.py
215 lines (186 loc) · 8.93 KB
/
eval_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import json
import numpy as np
import cv2
from glob import glob
from os.path import join as pjoin
from tqdm import tqdm
class_map = {'0':'Button', '1':'CheckBox', '2':'Chronometer', '3':'EditText', '4':'ImageButton', '5':'ImageView',
'6':'ProgressBar', '7':'RadioButton', '8':'RatingBar', '9':'SeekBar', '10':'Spinner', '11':'Switch',
'12':'ToggleButton', '13':'VideoView', '14':'TextView'}
def resize_label(bboxes, d_height, gt_height, bias=0):
bboxes_new = []
scale = gt_height / d_height
for bbox in bboxes:
bbox = [int(b * scale + bias) for b in bbox]
bboxes_new.append(bbox)
return bboxes_new
def draw_bounding_box(org, corners, color=(0, 255, 0), line=2, show=False):
board = org.copy()
for i in range(len(corners)):
board = cv2.rectangle(board, (corners[i][0], corners[i][1]), (corners[i][2], corners[i][3]), color, line)
if show:
cv2.imshow('a', cv2.resize(board, (500, 1000)))
cv2.waitKey(0)
return board
def load_detect_result_json(reslut_file_root, shrink=4):
def is_bottom_or_top(corner):
column_min, row_min, column_max, row_max = corner
if row_max < 36 or row_min > 725:
return True
return False
result_files = glob(pjoin(reslut_file_root, '*.json'))
compos_reform = {}
print('Loading %d detection results' % len(result_files))
for reslut_file in tqdm(result_files):
img_name = reslut_file.split('\\')[-1].split('.')[0]
compos = json.load(open(reslut_file, 'r'))['compos']
for compo in compos:
if compo['column_max'] - compo['column_min'] < 10 or compo['row_max'] - compo['row_min'] < 10:
continue
if is_bottom_or_top((compo['column_min'], compo['row_min'], compo['column_max'], compo['row_max'])):
continue
if img_name not in compos_reform:
compos_reform[img_name] = {'bboxes': [[compo['column_min'] + shrink, compo['row_min'] + shrink, compo['column_max'] - shrink, compo['row_max'] - shrink]],
'categories': [compo['category']]}
else:
compos_reform[img_name]['bboxes'].append([compo['column_min'] + shrink, compo['row_min'] + shrink, compo['column_max'] - shrink, compo['row_max'] - shrink])
compos_reform[img_name]['categories'].append(compo['category'])
return compos_reform
def load_ground_truth_json(gt_file):
def get_img_by_id(img_id):
for image in images:
if image['id'] == img_id:
return image['file_name'].split('/')[-1][:-4], (image['height'], image['width'])
def cvt_bbox(bbox):
'''
:param bbox: [x,y,width,height]
:return: [col_min, row_min, col_max, row_max]
'''
bbox = [int(b) for b in bbox]
return [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]
data = json.load(open(gt_file, 'r'))
images = data['images']
annots = data['annotations']
compos = {}
print('Loading %d ground truth' % len(annots))
for annot in tqdm(annots):
img_name, size = get_img_by_id(annot['image_id'])
if img_name not in compos:
compos[img_name] = {'bboxes': [cvt_bbox(annot['bbox'])], 'categories': [class_map[str(annot['category_id'])]], 'size': size}
else:
compos[img_name]['bboxes'].append(cvt_bbox(annot['bbox']))
compos[img_name]['categories'].append(class_map[str(annot['category_id'])])
return compos
def eval(detection, ground_truth, img_root, show=True, no_text=False, only_text=False):
def compo_filter(compos, flag):
if not no_text and not only_text:
return compos
compos_new = {'bboxes': [], 'categories': []}
for k, category in enumerate(compos['categories']):
if only_text:
if flag == 'det' and category != 'TextView':
continue
if flag == 'gt' and category != 'TextView':
continue
elif no_text:
if flag == 'det' and category == 'TextView':
continue
if flag == 'gt' and category == 'TextView':
continue
compos_new['bboxes'].append(compos['bboxes'][k])
compos_new['categories'].append(category)
return compos_new
def match(org, d_bbox, d_category, gt_compos, matched):
'''
:param matched: mark if the ground truth component is matched
:param d_bbox: [col_min, row_min, col_max, row_max]
:param gt_bboxes: list of ground truth [[col_min, row_min, col_max, row_max]]
:return: Boolean: if IOU large enough or detected box is contained by ground truth
'''
area_d = (d_bbox[2] - d_bbox[0]) * (d_bbox[3] - d_bbox[1])
gt_bboxes = gt_compos['bboxes']
gt_categories = gt_compos['categories']
for i, gt_bbox in enumerate(gt_bboxes):
if matched[i] == 0:
continue
area_gt = (gt_bbox[2] - gt_bbox[0]) * (gt_bbox[3] - gt_bbox[1])
col_min = max(d_bbox[0], gt_bbox[0])
row_min = max(d_bbox[1], gt_bbox[1])
col_max = min(d_bbox[2], gt_bbox[2])
row_max = min(d_bbox[3], gt_bbox[3])
# if not intersected, area intersection should be 0
w = max(0, col_max - col_min)
h = max(0, row_max - row_min)
area_inter = w * h
if area_inter == 0:
continue
iod = area_inter / area_d
iou = area_inter / (area_d + area_gt - area_inter)
# if show:
# cv2.putText(org, (str(round(iou, 2)) + ',' + str(round(iod, 2))), (d_bbox[0], d_bbox[1]),
# cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
if iou > 0.9 or iod == 1:
if d_category == gt_categories[i]:
matched[i] = 0
return True
return False
amount = len(detection)
TP, FP, FN = 0, 0, 0
pres, recalls, f1s = [], [], []
for i, image_id in enumerate(detection):
TP_this, FP_this, FN_this = 0, 0, 0
img = cv2.imread(pjoin(img_root, image_id + '.jpg'))
d_compos = detection[image_id]
if image_id not in ground_truth:
continue
gt_compos = ground_truth[image_id]
org_height = gt_compos['size'][0]
d_compos = compo_filter(d_compos, 'det')
gt_compos = compo_filter(gt_compos, 'gt')
d_compos['bboxes'] = resize_label(d_compos['bboxes'], 800, org_height)
matched = np.ones(len(gt_compos['bboxes']), dtype=int)
for j, d_bbox in enumerate(d_compos['bboxes']):
if match(img, d_bbox, d_compos['categories'][j], gt_compos, matched):
TP += 1
TP_this += 1
else:
FP += 1
FP_this += 1
FN += sum(matched)
FN_this = sum(matched)
try:
pre_this = TP_this / (TP_this + FP_this)
recall_this = TP_this / (TP_this + FN_this)
f1_this = 2 * (pre_this * recall_this) / (pre_this + recall_this)
except:
print('empty')
continue
pres.append(pre_this)
recalls.append(recall_this)
f1s.append(f1_this)
if show:
print(image_id + '.jpg')
print('[%d/%d] TP:%d, FP:%d, FN:%d, Precesion:%.3f, Recall:%.3f' % (
i, amount, TP_this, FP_this, FN_this, pre_this, recall_this))
# cv2.imshow('org', cv2.resize(img, (500, 1000)))
broad = draw_bounding_box(img, d_compos['bboxes'], color=(255, 0, 0), line=3)
draw_bounding_box(broad, gt_compos['bboxes'], color=(0, 0, 255), show=True, line=2)
if i % 200 == 0:
precision = TP / (TP + FP)
recall = TP / (TP + FN)
f1 = 2 * (precision * recall) / (precision + recall)
print(
'[%d/%d] TP:%d, FP:%d, FN:%d, Precesion:%.3f, Recall:%.3f, F1:%.3f' % (i, amount, TP, FP, FN, precision, recall, f1))
precision = TP / (TP + FP)
recall = TP / (TP + FN)
print('[%d/%d] TP:%d, FP:%d, FN:%d, Precesion:%.3f, Recall:%.3f, F1:%.3f' % (i, amount, TP, FP, FN, precision, recall, f1))
# print("Average precision:%.4f; Average recall:%.3f" % (sum(pres)/len(pres), sum(recalls)/len(recalls)))
return pres, recalls, f1s
no_text = True
only_text = False
# detect = load_detect_result_json('E:\\Mulong\\Result\\rico\\rico_uied\\rico_new_uied_cls\\ip')
# detect = load_detect_result_json('E:\\Mulong\\Result\\rico\\rico_uied\\rico_new_uied_cls\\merge')
detect = load_detect_result_json('E:\\Mulong\\Result\\rico\\rico_uied\\rico_new_uied_v3\\merge')
# detect = load_detect_result_json('E:\\Mulong\\Result\\rico\\rico_uied\\rico_new_uied_v3\\ocr')
gt = load_ground_truth_json('E:\\Mulong\\Datasets\\rico\\instances_test.json')
eval(detect, gt, 'E:\\Mulong\\Datasets\\rico\\combined', show=False, no_text=no_text, only_text=only_text)