forked from CyanogenMod/android_external_opencore
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathandroid_audio_output.cpp
568 lines (500 loc) · 21.3 KB
/
android_audio_output.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/*
**
** Copyright 2008, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "AudioOutput"
#include <utils/Log.h>
#include "android_audio_output.h"
#include <sys/prctl.h>
#include <sys/resource.h>
#include <utils/threads.h>
#include <media/AudioTrack.h>
using namespace android;
// TODO: dynamic buffer count based on sample rate and # channels
static const int kNumOutputBuffers = 4;
// maximum allowed clock drift before correction
static const int32 kMaxClockDriftInMsecs = 25; // should be tight enough for reasonable sync
static const int32 kMaxClockCorrection = 100; // maximum clock correction per update
/*
/ Packet Video Audio MIO component
/
/ This implementation routes audio to AudioFlinger. Audio buffers are
/ enqueued in a message queue to a separate audio output thread. Once
/ the buffers have been successfully written, they are returned through
/ another message queue to the MIO and from there back to the engine.
/ This separation is necessary because most of the PV API is not
/ thread-safe.
*/
OSCL_EXPORT_REF AndroidAudioOutput::AndroidAudioOutput() :
AndroidAudioMIO("AndroidAudioOutput"),
iExitAudioThread(false),
iReturnBuffers(false),
iActiveTiming(NULL)
{
LOGV("constructor");
iClockTimeOfWriting_ns = 0;
iInputFrameSizeInBytes = 0;
// semaphore used to communicate between this mio and the audio output thread
iAudioThreadSem = new OsclSemaphore();
iAudioThreadSem->Create(0);
iAudioThreadTermSem = new OsclSemaphore();
iAudioThreadTermSem->Create(0);
iAudioThreadReturnSem = new OsclSemaphore();
iAudioThreadReturnSem->Create(0);
iAudioThreadCreatedSem = new OsclSemaphore();
iAudioThreadCreatedSem->Create(0);
// locks to access the queues by this mio and by the audio output thread
iOSSRequestQueueLock.Create();
iOSSRequestQueue.reserve(iWriteResponseQueue.capacity());
// create active timing object
OsclMemAllocator alloc;
OsclAny*ptr=alloc.allocate(sizeof(AndroidAudioMIOActiveTimingSupport));
if (ptr) {
iActiveTiming=new(ptr)AndroidAudioMIOActiveTimingSupport(kMaxClockDriftInMsecs, kMaxClockCorrection);
iActiveTiming->setThreadSemaphore(iAudioThreadSem);
}
}
OSCL_EXPORT_REF AndroidAudioOutput::~AndroidAudioOutput()
{
LOGV("destructor");
// make sure output thread has exited
RequestAndWaitForThreadExit();
// cleanup active timing object
if (iActiveTiming) {
iActiveTiming->~AndroidAudioMIOActiveTimingSupport();
OsclMemAllocator alloc;
alloc.deallocate(iActiveTiming);
}
// clean up some thread interface objects
iAudioThreadSem->Close();
delete iAudioThreadSem;
iAudioThreadTermSem->Close();
delete iAudioThreadTermSem;
iAudioThreadReturnSem->Close();
delete iAudioThreadReturnSem;
iAudioThreadCreatedSem->Close();
delete iAudioThreadCreatedSem;
iOSSRequestQueueLock.Close();
}
PVMFCommandId AndroidAudioOutput::QueryInterface(const PVUuid& aUuid, PVInterface*& aInterfacePtr, const OsclAny* aContext)
{
LOGV("QueryInterface in");
// check for active timing extension
if (iActiveTiming && (aUuid == PvmiClockExtensionInterfaceUuid)) {
PvmiClockExtensionInterface* myInterface = OSCL_STATIC_CAST(PvmiClockExtensionInterface*,iActiveTiming);
aInterfacePtr = OSCL_STATIC_CAST(PVInterface*, myInterface);
return QueueCmdResponse(PVMFSuccess, aContext);
}
// pass to base class
else return AndroidAudioMIO::QueryInterface(aUuid, aInterfacePtr, aContext);
}
PVMFCommandId AndroidAudioOutput::QueryUUID(const PvmfMimeString& aMimeType,
Oscl_Vector<PVUuid, OsclMemAllocator>& aUuids,
bool aExactUuidsOnly, const OsclAny* aContext)
{
LOGV("QueryUUID in");
int32 err;
OSCL_TRY(err,
aUuids.push_back(PVMI_CAPABILITY_AND_CONFIG_PVUUID);
if (iActiveTiming) {
PVUuid uuid;
iActiveTiming->queryUuid(uuid);
aUuids.push_back(uuid);
}
);
return QueueCmdResponse(err == OsclErrNone ? PVMFSuccess : PVMFFailure, aContext);
}
PVMFCommandId AndroidAudioOutput::Stop(const OsclAny* aContext)
{
LOGV("AndroidAudioOutput Stop (%p)", aContext);
// return all buffer by writecomplete
returnAllBuffers();
return AndroidAudioMIO::Stop(aContext);
}
PVMFCommandId AndroidAudioOutput::Reset(const OsclAny* aContext)
{
LOGV("AndroidAudioOutput Reset (%p)", aContext);
// return all buffer by writecomplete
returnAllBuffers();
// request output thread to exit
RequestAndWaitForThreadExit();
return AndroidAudioMIO::Reset(aContext);
}
void AndroidAudioOutput::cancelCommand(PVMFCommandId command_id)
{
LOGV("cancelCommand (%u) RequestQ size %d", command_id,iOSSRequestQueue.size());
iOSSRequestQueueLock.Lock();
for (uint32 i = 0; i < iOSSRequestQueue.size(); i++) {
if (iOSSRequestQueue[i].iCmdId == command_id) {
iDataQueued -= iOSSRequestQueue[i].iDataLen;
if (iPeer)
iPeer->writeComplete(PVMFSuccess, iOSSRequestQueue[i].iCmdId, (OsclAny*)iOSSRequestQueue[i].iContext);
iOSSRequestQueue.erase(&iOSSRequestQueue[i]);
break;
}
}
iOSSRequestQueueLock.Unlock();
LOGV("cancelCommand data queued = %u", iDataQueued);
ProcessWriteResponseQueue();
}
void AndroidAudioOutput::returnAllBuffers()
{
LOGV("returnAllBuffers RequestQ size %d",iOSSRequestQueue.size());
iOSSRequestQueueLock.Lock();
while (iOSSRequestQueue.size()) {
iDataQueued -= iOSSRequestQueue[0].iDataLen;
if (iPeer)
iPeer->writeComplete(PVMFSuccess, iOSSRequestQueue[0].iCmdId, (OsclAny*)iOSSRequestQueue[0].iContext);
iOSSRequestQueue.erase(&iOSSRequestQueue[0]);
}
iOSSRequestQueueLock.Unlock();
LOGV("returnAllBuffers data queued = %u", iDataQueued);
if (iAudioThreadSem && iAudioThreadCreatedAndMIOConfigured) {
LOGV("signal thread to return buffers");
iReturnBuffers = true;
iAudioThreadSem->Signal();
while (iAudioThreadReturnSem->Wait() != OsclProcStatus::SUCCESS_ERROR)
;
LOGV("return buffers signal completed");
}
}
PVMFCommandId AndroidAudioOutput::DiscardData(PVMFTimestamp aTimestamp, const OsclAny* aContext)
{
LOGV("DiscardData timestamp(%u) RequestQ size %d", aTimestamp,iOSSRequestQueue.size());
if(iActiveTiming){
LOGV("Force clock update");
iActiveTiming->ForceClockUpdate();
}
bool sched = false;
PVMFCommandId audcmdid;
const OsclAny* context;
PVMFTimestamp timestamp;
// the OSSRequest queue should be drained
// all the buffers in them should be returned to the engine
// writeComplete cannot be called from here
// thus the best way is to queue the buffers onto the write response queue
// and then call RunIfNotReady
iOSSRequestQueueLock.Lock();
for (int32 i = (iOSSRequestQueue.size() - 1); i >= 0; i--) {
if (iOSSRequestQueue[i].iTimestamp < aTimestamp) {
audcmdid = iOSSRequestQueue[i].iCmdId;
context = iOSSRequestQueue[i].iContext;
timestamp = iOSSRequestQueue[i].iTimestamp;
iDataQueued -= iOSSRequestQueue[i].iDataLen;
LOGV("discard buffer (%d) context(%p) timestamp(%u) Datalen(%d)", audcmdid,context, timestamp,iOSSRequestQueue[i].iDataLen);
iOSSRequestQueue.erase(&iOSSRequestQueue[i]);
sched = true;
WriteResponse resp(PVMFSuccess, audcmdid, context, timestamp);
iWriteResponseQueueLock.Lock();
iWriteResponseQueue.push_back(resp);
iWriteResponseQueueLock.Unlock();
}
}
LOGV("DiscardData data queued = %u, setting flush pending", iDataQueued);
iFlushPending=true;
iOSSRequestQueueLock.Unlock();
if (sched)
RunIfNotReady();
return AndroidAudioMIO::DiscardData(aTimestamp, aContext);
}
void AndroidAudioOutput::RequestAndWaitForThreadExit()
{
LOGV("RequestAndWaitForThreadExit In");
if (iAudioThreadSem && iAudioThreadCreatedAndMIOConfigured) {
LOGV("signal thread for exit");
iExitAudioThread = true;
iAudioThreadSem->Signal();
while (iAudioThreadTermSem->Wait() != OsclProcStatus::SUCCESS_ERROR)
;
LOGV("thread term signal received");
iAudioThreadCreatedAndMIOConfigured = false;
}
}
void AndroidAudioOutput::setParametersSync(PvmiMIOSession aSession, PvmiKvp* aParameters,
int num_elements, PvmiKvp * & aRet_kvp)
{
LOGV("AndroidAudioOutput setParametersSync In");
AndroidAudioMIO::setParametersSync(aSession, aParameters, num_elements, aRet_kvp);
// initialize thread when we have enough information
if (iAudioSamplingRateValid && iAudioNumChannelsValid && iAudioFormat != PVMF_MIME_FORMAT_UNKNOWN) {
LOGV("start audio thread");
OsclThread AudioOutput_Thread;
iExitAudioThread = false;
iReturnBuffers = false;
OsclProcStatus::eOsclProcError ret = AudioOutput_Thread.Create((TOsclThreadFuncPtr)start_audout_thread_func,
0, (TOsclThreadFuncArg)this, Start_on_creation);
//Don't signal the MIO node that the configuration is complete until the driver latency has been set
while (iAudioThreadCreatedSem->Wait() != OsclProcStatus::SUCCESS_ERROR)
;
if(OsclProcStatus::SUCCESS_ERROR == ret){
iAudioThreadCreatedAndMIOConfigured = true;
if(iObserver){
LOGV("event PVMFMIOConfigurationComplete to peer");
iObserver->ReportInfoEvent(PVMFMIOConfigurationComplete);
}
}
else{
iAudioThreadCreatedAndMIOConfigured = false;
if(iObserver){
LOGE("event PVMFErrResourceConfiguration to peer");
iObserver->ReportErrorEvent(PVMFErrResourceConfiguration);
}
}
}
LOGV("AndroidAudioOutput setParametersSync out");
}
void AndroidAudioOutput::Run()
{
// if running, update clock
if ((iState == STATE_MIO_STARTED) && iInputFrameSizeInBytes) {
uint32 msecsQueued = iDataQueued / iInputFrameSizeInBytes * iActiveTiming->msecsPerFrame();
LOGV("%u msecs of data queued, %u bytes of data queued", msecsQueued,iDataQueued);
iActiveTiming->UpdateClock();
}
AndroidAudioMIO::Run();
}
void AndroidAudioOutput::writeAudioBuffer(uint8* aData, uint32 aDataLen, PVMFCommandId cmdId, OsclAny* aContext, PVMFTimestamp aTimestamp)
{
// queue up buffer and signal audio thread to process it
LOGV("writeAudioBuffer :: DataLen(%d), cmdId(%d), Context(%p), Timestamp (%d)",aDataLen, cmdId, aContext, aTimestamp);
OSSRequest req(aData, aDataLen, cmdId, aContext, aTimestamp);
iOSSRequestQueueLock.Lock();
iOSSRequestQueue.push_back(req);
iDataQueued += aDataLen;
// wake up the audio output thread to process this buffer only if clock has started running
if (iActiveTiming->clockState() == PVMFMediaClock::RUNNING) {
LOGV("clock is ticking signal thread for data");
iAudioThreadSem->Signal();
}
iOSSRequestQueueLock.Unlock();
}
//------------------------------------------------------------------------
// audio thread
//
#undef LOG_TAG
#define LOG_TAG "audiothread"
// this is the audio output thread
// used to send data to the linux audio output device
// communicates with the audio MIO via a semaphore, a request queue and a response queue
/*static*/ int AndroidAudioOutput::start_audout_thread_func(TOsclThreadFuncArg arg)
{
LOGV("start_audout_thread_func in");
AndroidAudioOutput *obj = (AndroidAudioOutput *)arg;
prctl(PR_SET_NAME, (unsigned long) "audio out", 0, 0, 0);
int err = obj->audout_thread_func();
LOGV("start_audout_thread_func out return code %d",err);
return err;
}
int AndroidAudioOutput::audout_thread_func()
{
enum { IDLE, STOPPED, STARTED, PAUSED } state = IDLE;
int64_t lastClock = 0;
// LOGD("audout_thread_func");
#if defined(HAVE_SCHED_SETSCHEDULER) && defined(HAVE_GETTID)
setpriority(PRIO_PROCESS, gettid(), ANDROID_PRIORITY_AUDIO);
#endif
if (iAudioNumChannelsValid == false || iAudioSamplingRateValid == false || iAudioFormat == PVMF_MIME_FORMAT_UNKNOWN) {
LOGE("channel count or sample rate is invalid");
return -1;
}
LOGV("Creating AudioTrack object: rate=%d, channels=%d, buffers=%d", iAudioSamplingRate, iAudioNumChannels, kNumOutputBuffers);
status_t ret = mAudioSink->open(iAudioSamplingRate, iAudioNumChannels, ((iAudioFormat==PVMF_MIME_PCM8)?AudioSystem::PCM_8_BIT:AudioSystem::PCM_16_BIT), kNumOutputBuffers);
iAudioSamplingRateValid = false; // purpose of these flags is over here, reset these for next validation recording.
iAudioNumChannelsValid = false;
iAudioFormat = PVMF_MIME_FORMAT_UNKNOWN;
if (ret != 0) {
iAudioThreadCreatedAndMIOConfigured = false;
LOGE("Error creating AudioTrack");
return -1;
}
// calculate timing data
int outputFrameSizeInBytes = mAudioSink->frameSize();
float msecsPerFrame = mAudioSink->msecsPerFrame();
uint32 latency = mAudioSink->latency();
LOGV("driver latency(%u),outputFrameSizeInBytes(%d),msecsPerFrame(%f),frame count(%d)", latency,outputFrameSizeInBytes,msecsPerFrame,mAudioSink->frameCount());
// initialize active timing
iActiveTiming->setFrameRate(msecsPerFrame);
iActiveTiming->setDriverLatency(latency);
iAudioThreadCreatedSem->Signal();
// this must be set after iActiveTiming->setFrameRate to prevent race
// condition in Run()
iInputFrameSizeInBytes = outputFrameSizeInBytes;
// buffer management
uint32 bytesAvailInBuffer = 0;
uint32 bytesToWrite;
uint32 bytesWritten;
uint8* data = 0;
uint32 len = 0;
PVMFCommandId cmdid = 0;
const OsclAny* context = 0;
PVMFTimestamp timestamp = 0;
// wait for signal from MIO thread
LOGV("wait for signal");
iAudioThreadSem->Wait();
LOGV("ready to work");
while (1)
{
// if paused, stop the output track
switch (iActiveTiming->clockState()) {
case PVMFMediaClock::RUNNING:
// start output
if (state != STARTED) {
if (iFlushPending) {
LOGV("flush");
mAudioSink->flush();
iFlushPending = false;
bytesAvailInBuffer = 0;
iClockTimeOfWriting_ns = 0;
// discard partial buffer and send response to MIO
if (data && len) {
LOGV("discard partial buffer and send response to MIO");
sendResponse(cmdid, context, timestamp);
data = 0;
len = 0;
}
}
if (iDataQueued || len) {
LOGV("start");
mAudioSink->start();
state = STARTED;
} else {
LOGV("clock running and no data queued - don't start track");
}
}
else{
LOGV("audio sink already in started state");
}
break;
case PVMFMediaClock::STOPPED:
LOGV("clock has been stopped...");
case PVMFMediaClock::PAUSED:
if (state == STARTED) {
LOGV("pause");
mAudioSink->pause();
}
state = PAUSED;
if(!iExitAudioThread && !iReturnBuffers) {
LOGV("wait");
iAudioThreadSem->Wait();
LOGV("awake");
}
break;
default:
break;
}
// if out of data, check the request queue
if (len == 0) {
//LOGV("no playable data, Request Q size %d",iOSSRequestQueue.size());
iOSSRequestQueueLock.Lock();
bool empty = iOSSRequestQueue.empty();
if (!empty) {
data = iOSSRequestQueue[0].iData;
len = iOSSRequestQueue[0].iDataLen;
cmdid = iOSSRequestQueue[0].iCmdId;
context = iOSSRequestQueue[0].iContext;
timestamp = iOSSRequestQueue[0].iTimestamp;
iDataQueued -= len;
iOSSRequestQueue.erase(&iOSSRequestQueue[0]);
LOGV("receive buffer (%d), timestamp = %u data queued = %u", cmdid, timestamp,iDataQueued);
}
iOSSRequestQueueLock.Unlock();
// if queue is empty, wait for more work
// FIXME: Why do end up here so many times when stopping?
if (empty && !iExitAudioThread && !iReturnBuffers) {
LOGV("queue is empty, wait for more work");
iAudioThreadSem->Wait();
}
// empty buffer means "End-Of-Stream" - send response to MIO
else if (len == 0) {
LOGV("EOS");
state = STOPPED;
mAudioSink->stop();
if(!iExitAudioThread){
nsecs_t interval_nanosec = 0; // Interval between last writetime and EOS processing time in nanosec
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
LOGV("now = %lld ,iClockTimeOfWriting_ns = %lld",now, iClockTimeOfWriting_ns);
if(now >= iClockTimeOfWriting_ns){
interval_nanosec = now - iClockTimeOfWriting_ns;
}
else{ //when timevalue wraps
interval_nanosec = 0;
}
LOGV(" I am early,going for sleep for latency = %u millsec, interval_nanosec = %lld",latency, interval_nanosec);
struct timespec requested_time_delay, remaining;
requested_time_delay.tv_sec = latency/1000;
nsecs_t latency_nanosec = (latency%1000)*1000*1000;
if(interval_nanosec < latency_nanosec){
requested_time_delay.tv_nsec = latency_nanosec - interval_nanosec;
nanosleep (&requested_time_delay, &remaining);
LOGV(" Wow, what a great siesta....send response to engine");
}
else{// interval is greater than latency so no need of sleep
LOGV(" No time to sleep :( send response to engine anyways");
}
iClockTimeOfWriting_ns = 0;
sendResponse(cmdid, context, timestamp);
}
}
}
if (iReturnBuffers) {
LOGV("Return buffers from the audio thread");
if (len) sendResponse(cmdid, context, timestamp);
iReturnBuffers=false;
data = 0;
len = 0;
iAudioThreadReturnSem->Signal();
}
// check for exit signal
if (iExitAudioThread) {
LOGV("exit received");
if (len) sendResponse(cmdid, context, timestamp);
break;
}
// data to output?
if (len && (state == STARTED) && !iExitAudioThread) {
// always align to AudioFlinger buffer boundary
if (bytesAvailInBuffer == 0)
bytesAvailInBuffer = mAudioSink->bufferSize();
bytesToWrite = bytesAvailInBuffer > len ? len : bytesAvailInBuffer;
//LOGV("16 bit :: cmdid = %d, len = %u, bytesAvailInBuffer = %u, bytesToWrite = %u", cmdid, len, bytesAvailInBuffer, bytesToWrite);
bytesWritten = mAudioSink->write(data, bytesToWrite);
if (bytesWritten != bytesToWrite) {
LOGE("Error writing audio data");
iAudioThreadSem->Wait();
}
data += bytesWritten;
len -= bytesWritten;
iClockTimeOfWriting_ns = systemTime(SYSTEM_TIME_MONOTONIC);
// count bytes sent
bytesAvailInBuffer -= bytesWritten;
// update frame count for latency calculation
iActiveTiming->incFrameCount(bytesWritten / outputFrameSizeInBytes);
//LOGV("outputFrameSizeInBytes = %u,bytesWritten = %u,bytesAvailInBuffer = %u", outputFrameSizeInBytes,bytesWritten,bytesAvailInBuffer);
// if done with buffer - send response to MIO
if (data && !len) {
LOGV("done with the data cmdid %d, context %p, timestamp %d ",cmdid, context, timestamp);
sendResponse(cmdid, context, timestamp);
data = 0;
}
}
} // while loop
LOGV("stop and delete track");
mAudioSink->stop();
iClockTimeOfWriting_ns = 0;
// LOGD("audout_thread_func exit");
iAudioThreadTermSem->Signal();
return 0;
}