forked from Zehui-Lin/UniUSNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathomni_test.py
253 lines (221 loc) · 11.9 KB
/
omni_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import argparse
import logging
import os
import random
import sys
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from tqdm import tqdm
from config import get_config
from datasets.dataset import CenterCropGenerator
from datasets.dataset import USdatasetCls, USdatasetSeg
from utils import omni_seg_test
from sklearn.metrics import accuracy_score
from networks.omni_vision_transformer import OmniVisionTransformer as ViT_omni
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str,
default='data_demo/', help='root dir for data')
parser.add_argument('--output_dir', type=str, help='output dir')
parser.add_argument('--max_epochs', type=int, default=200, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int, default=16,
help='batch_size per gpu')
parser.add_argument('--img_size', type=int, default=224, help='input patch size of network input')
parser.add_argument('--is_saveout', action="store_true", help='whether to save results during inference')
parser.add_argument('--test_save_dir', type=str, default='../predictions', help='saving prediction as nii!')
parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.01, help='segmentation network learning rate')
parser.add_argument('--seed', type=int, default=1234, help='random seed')
parser.add_argument('--cfg', type=str, default="configs/swin_tiny_patch4_window7_224_lite.yaml",
metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
parser.add_argument('--task', type=str, default='seg', choices=['seg', 'cls'], help='task type')
parser.add_argument('--prompt', action='store_true', help='using prompt')
args = parser.parse_args()
config = get_config(args)
def inference(args, model, test_save_path=None):
import csv
import time
if not os.path.exists("exp_out/result.csv"):
with open("exp_out/result.csv", 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(['dataset', 'task', 'metric A', 'metric B', 'time'])
# seg_test_set = ["BUS-BRA", "BUSIS", "CAMUS", "DDTI", "Fetal_HC", "kidneyUS", "UDIAT"]
seg_test_set = ["BUSIS"] # TODO 恢复
for dataset_name in seg_test_set:
num_classes = 2
db_test = USdatasetSeg(
base_dir=os.path.join(args.root_path, "segmentation", dataset_name),
split="test",
list_dir=os.path.join(args.root_path, "segmentation", dataset_name),
transform=CenterCropGenerator(output_size=[args.img_size, args.img_size]),
prompt=args.prompt
)
testloader = DataLoader(db_test, batch_size=1, shuffle=False, num_workers=1)
logging.info("{} test iterations per epoch".format(len(testloader)))
model.eval()
metric_list = 0.0
count_matrix = np.ones((len(db_test), num_classes-1))
for i_batch, sampled_batch in tqdm(enumerate(testloader)):
image, label, case_name = sampled_batch["image"], sampled_batch["label"], sampled_batch['case_name'][0]
if args.prompt:
position_prompt = torch.tensor(np.array(sampled_batch['position_prompt'])).permute([1, 0]).float()
task_prompt = torch.tensor(np.array([[1], [0]])).permute([1, 0]).float()
type_prompt = torch.tensor(np.array(sampled_batch['type_prompt'])).permute([1, 0]).float()
nature_prompt = torch.tensor(np.array(sampled_batch['nature_prompt'])).permute([1, 0]).float()
metric_i = omni_seg_test(image, label, model,
classes=num_classes,
test_save_path=test_save_path,
case=case_name,
prompt=args.prompt,
type_prompt=type_prompt,
nature_prompt=nature_prompt,
position_prompt=position_prompt,
task_prompt=task_prompt
)
else:
metric_i = omni_seg_test(image, label, model,
classes=num_classes,
test_save_path=test_save_path,
case=case_name)
zero_label_flag = False
for i in range(1, num_classes):
if not metric_i[i-1][1]:
count_matrix[i_batch, i-1] = 0
zero_label_flag = True
metric_i = [element[0] for element in metric_i]
metric_list += np.array(metric_i)
logging.info('idx %d case %s mean_dice %f' %
(i_batch, case_name, np.mean(metric_i, axis=0)))
logging.info("This case has zero label: %s" % zero_label_flag)
metric_list = metric_list / (count_matrix.sum(axis=0) + 1e-6)
for i in range(1, num_classes):
logging.info('Mean class %d mean_dice %f' % (i, metric_list[i-1]))
performance = np.mean(metric_list, axis=0)
logging.info('Testing performance in best val model: mean_dice : %f' % (performance))
with open("exp_out/result.csv", 'a', newline='') as csvfile:
writer = csv.writer(csvfile)
if args.prompt:
writer.writerow([dataset_name, 'omni_seg_prompt@'+args.output_dir, performance,
time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())])
else:
writer.writerow([dataset_name, 'omni_seg@'+args.output_dir, performance,
time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())])
# cls_test_set = ["Appendix", "BUS-BRA", "Fatty-Liver", "UDIAT"]
cls_test_set = ["UDIAT"] # TODO 恢复
for dataset_name in cls_test_set:
num_classes = 2
db_test = USdatasetCls(
base_dir=os.path.join(args.root_path, "classification", dataset_name),
split="test",
list_dir=os.path.join(args.root_path, "classification", dataset_name),
transform=CenterCropGenerator(output_size=[args.img_size, args.img_size]),
prompt=args.prompt
)
testloader = DataLoader(db_test, batch_size=1, shuffle=False, num_workers=1)
logging.info("{} test iterations per epoch".format(len(testloader)))
model.eval()
label_list = []
prediction_list = []
prediction_prob_list = []
for i_batch, sampled_batch in tqdm(enumerate(testloader)):
image, label, case_name = sampled_batch["image"], sampled_batch["label"], sampled_batch['case_name'][0]
if args.prompt:
position_prompt = torch.tensor(np.array(sampled_batch['position_prompt'])).permute([1, 0]).float()
task_prompt = torch.tensor(np.array([[0], [1]])).permute([1, 0]).float()
type_prompt = torch.tensor(np.array(sampled_batch['type_prompt'])).permute([1, 0]).float()
nature_prompt = torch.tensor(np.array(sampled_batch['nature_prompt'])).permute([1, 0]).float()
with torch.no_grad():
output = model((image.cuda(), position_prompt.cuda(), task_prompt.cuda(),
type_prompt.cuda(), nature_prompt.cuda()))[1]
else:
with torch.no_grad():
output = model(image.cuda())[1]
output_prob = torch.softmax(output, dim=1).data.cpu().numpy()
output = np.argmax(output_prob)
logging.info('idx %d case %s label: %d predict: %d' % (i_batch, case_name, label, output))
label_list.append(label.numpy())
prediction_prob_list.append(output_prob)
prediction_list.append(output)
label_list = np.array(label_list)
label_list_OneHot = np.eye(num_classes)[label_list].squeeze(1)
prediction_list = np.array(prediction_list)
for i in range(num_classes):
logging.info('class %d acc %f' % (i, accuracy_score(
(label_list == i).astype(int), (prediction_list == i).astype(int))))
performance = accuracy_score(label_list, prediction_list)
logging.info('Testing performance in best val model: acc : %f' % (performance))
with open("exp_out/result.csv", 'a', newline='') as csvfile:
writer = csv.writer(csvfile)
if args.prompt:
writer.writerow([dataset_name, 'omni_cls_prompt@'+args.output_dir, performance,
time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())])
else:
writer.writerow([dataset_name, 'omni_cls@'+args.output_dir, performance,
time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())])
if __name__ == "__main__":
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
net = ViT_omni(
config,
prompt=args.prompt,
).cuda()
net.load_from(config)
snapshot = os.path.join(args.output_dir, 'best_model.pth')
if not os.path.exists(snapshot):
snapshot = snapshot.replace('best_model', 'epoch_'+str(args.max_epochs-1))
device = torch.device("cuda")
model = net.to(device=device)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
torch.distributed.init_process_group(backend="nccl", init_method='env://', world_size=1, rank=0)
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
import copy
pretrained_dict = torch.load(snapshot, map_location=device)
full_dict = copy.deepcopy(pretrained_dict)
for k, v in pretrained_dict.items():
if "module." not in k:
full_dict["module."+k] = v
del full_dict[k]
msg = model.load_state_dict(full_dict)
print("self trained swin unet", msg)
snapshot_name = snapshot.split('/')[-1]
logging.basicConfig(filename=args.output_dir+"/"+"test_result.txt", level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
logging.info(snapshot_name)
if args.is_saveout:
args.test_save_dir = os.path.join(args.output_dir, "predictions")
test_save_path = args.test_save_dir
os.makedirs(test_save_path, exist_ok=True)
else:
test_save_path = None
inference(args, net, test_save_path)