forked from Lightning-AI/litgpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_lora.py
826 lines (732 loc) · 29.4 KB
/
test_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
import os
from contextlib import redirect_stdout
from io import StringIO
from itertools import product
from unittest import mock
from unittest.mock import Mock
import pytest
import torch
import yaml
from lightning import Fabric
from lightning.fabric.plugins.precision.bitsandbytes import _BITSANDBYTES_AVAILABLE, BitsandbytesPrecision
from lightning.fabric.wrappers import _FabricOptimizer
from torch._dynamo.backends import debugging
from torch.nn import functional as F
from transformers.models.gemma import GemmaConfig, GemmaForCausalLM
from transformers.models.gemma2 import Gemma2Config, Gemma2ForCausalLM
from transformers.models.mixtral import MixtralConfig, MixtralForCausalLM
import litgpt.config as config_module
import litgpt.finetune.lora as module
from litgpt.args import EvalArgs, TrainArgs
from litgpt.data import Alpaca
from litgpt.lora import GPT as LoRAGPT
from litgpt.lora import CausalSelfAttention as LoRACausalSelfAttention
from litgpt.lora import Config, LoRALinear, LoRAQKVLinear, lora_filter, mark_only_lora_as_trainable, merge_lora_weights
from litgpt.model import GPT as BaseGPT
from litgpt.scripts.convert_hf_checkpoint import copy_weights_gemma_2, copy_weights_hf_llama
from tests.conftest import RunIf
def test_lora_layer_replacement():
config = Config(n_layer=2, n_head=4, n_embd=8, block_size=8, vocab_size=8, lora_r=8, lora_alpha=8, lora_dropout=0.1)
model = LoRAGPT(config)
assert isinstance(model.transformer.h[0].attn, LoRACausalSelfAttention)
assert isinstance(model.transformer.h[1].attn, LoRACausalSelfAttention)
assert isinstance(model.lm_head, LoRALinear)
assert isinstance(model.transformer.h[0].mlp.proj, LoRALinear)
def test_lora_merge():
config = Config(
n_layer=1,
n_head=2,
n_embd=8,
block_size=8,
vocab_size=8,
lora_r=8,
lora_alpha=8,
lora_dropout=0.1,
lora_query=True,
lora_value=True,
lora_projection=True,
)
model = LoRAGPT(config)
model.train()
attn_proj = model.transformer.h[0].attn.proj
initial_weight = attn_proj.linear.weight.clone()
assert torch.equal(attn_proj.linear.weight, initial_weight)
# perform an update to the LoRA weights
mark_only_lora_as_trainable(model)
optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
y = model(torch.randint(0, 8, size=(2, 4), dtype=torch.int64))
y.sum().backward()
optimizer.step()
optimizer.zero_grad()
# the weight remains unchanged (only lora A and B change)
assert torch.equal(attn_proj.linear.weight, initial_weight)
# calling merge() multiple times in a row should not merge multiple times
merge_lora_weights(model)
assert attn_proj.merged
weight_after = attn_proj.linear.weight.clone()
merge_lora_weights(model)
merge_lora_weights(model)
assert torch.equal(attn_proj.linear.weight, weight_after)
# check that `W_after = W_initial + (A x B)`
delta_w = attn_proj.get_lora_AB()
torch.testing.assert_close(weight_after, initial_weight + delta_w)
def test_lora_mqa_gqa():
# MHA
config = Config(
n_layer=1,
n_head=4,
n_embd=8,
block_size=1,
vocab_size=1,
lora_r=2,
lora_alpha=8,
lora_dropout=0.1,
lora_query=True,
lora_value=True,
)
assert config.n_query_groups == config.n_head
model = LoRAGPT(config)
attn = model.transformer.h[0].attn.attn
for p in attn.linear.parameters():
torch.nn.init.zeros_(p)
torch.nn.init.ones_(attn.lora_B)
lora_ind = [0, 1, 6, 7, 12, 13, 18, 19, 4, 5, 10, 11, 16, 17, 22, 23]
assert attn.linear.weight.shape == (24, 8)
assert attn.lora_A.shape == (4, 8)
assert attn.lora_B.shape == (16, 2)
assert torch.equal(attn.lora_ind, torch.tensor(lora_ind))
x = torch.randint(0, 8, size=(3, 5, 16), dtype=torch.int64)
assert attn.zero_pad(x).shape == (3, 5, 24)
bsz, ctx_len, in_dim = 2, 30, 8
x_in = torch.randn(bsz, ctx_len, in_dim)
out = attn(x_in)
non_lora_ind = list(set(range(24)).difference(lora_ind))
assert torch.count_nonzero(out[:, :, lora_ind]) == bsz * ctx_len * len(lora_ind)
assert torch.count_nonzero(out[:, :, non_lora_ind]) == 0
# MQA
config.n_query_groups = 1
model = LoRAGPT(config)
attn = model.transformer.h[0].attn.attn
for p in attn.linear.parameters():
torch.nn.init.zeros_(p)
torch.nn.init.ones_(attn.lora_B)
lora_ind = [0, 1, 2, 3, 4, 5, 6, 7, 10, 11]
assert attn.linear.weight.shape == (12, 8)
assert attn.lora_A.shape == (4, 8)
assert attn.lora_B.shape == (10, 2)
assert torch.equal(attn.lora_ind, torch.tensor(lora_ind))
x = torch.randint(0, 8, size=(3, 5, 10), dtype=torch.int64)
assert attn.zero_pad(x).shape == (3, 5, 12)
bsz, ctx_len, in_dim = 2, 30, 8
x_in = torch.randn(bsz, ctx_len, in_dim)
out = attn(x_in)
non_lora_ind = list(set(range(12)).difference(lora_ind))
assert torch.count_nonzero(out[:, :, lora_ind]) == bsz * ctx_len * len(lora_ind)
assert torch.count_nonzero(out[:, :, non_lora_ind]) == 0
# GQA
config.n_query_groups = 2
model = LoRAGPT(config)
attn = model.transformer.h[0].attn.attn
for p in attn.linear.parameters():
torch.nn.init.zeros_(p)
torch.nn.init.ones_(attn.lora_B)
lora_ind = [0, 1, 2, 3, 8, 9, 10, 11, 6, 7, 14, 15]
assert attn.linear.weight.shape == (16, 8)
assert attn.lora_A.shape == (4, 8)
assert attn.lora_B.shape == (12, 2)
assert torch.equal(attn.lora_ind, torch.tensor(lora_ind))
x = torch.randint(0, 8, size=(3, 5, 12), dtype=torch.int64)
assert attn.zero_pad(x).shape == (3, 5, 16)
bsz, ctx_len, in_dim = 2, 30, 8
x_in = torch.randn(bsz, ctx_len, in_dim)
out = attn(x_in)
non_lora_ind = list(set(range(16)).difference(lora_ind))
assert torch.count_nonzero(out[:, :, lora_ind]) == bsz * ctx_len * len(lora_ind)
assert torch.count_nonzero(out[:, :, non_lora_ind]) == 0
def test_lora_filter(tmp_path):
fabric = Fabric(devices=1)
model = LoRAGPT.from_name("pythia-14m", n_layer=3, lora_r=1, lora_query=True, lora_value=True)
save_path = tmp_path / "model.pth"
fabric.save(save_path, {"model": model}, filter={"model": lora_filter})
saved = torch.load(save_path)["model"]
expected = {
"transformer.h.1.attn.attn.lora_B",
"transformer.h.2.attn.attn.lora_B",
"transformer.h.2.attn.attn.lora_A",
"transformer.h.1.attn.attn.lora_A",
"transformer.h.0.attn.attn.lora_A",
"transformer.h.0.attn.attn.lora_B",
}
assert set(saved) == expected
@mock.patch.dict(os.environ, {"LT_ACCELERATOR": "cpu"})
def test_lora_script(tmp_path, fake_checkpoint_dir, monkeypatch, alpaca_path):
model_config = dict(block_size=128, n_layer=2, n_embd=8, n_head=4, padded_vocab_size=8)
(fake_checkpoint_dir / "model_config.yaml").write_text(yaml.dump(model_config))
monkeypatch.setattr(module, "load_checkpoint", Mock())
monkeypatch.setattr(module, "merge_lora", Mock())
tokenizer_mock = Mock()
tokenizer_mock.return_value = tokenizer_mock
tokenizer_mock.encode = lambda *_, **__: torch.tensor([3, 2, 1])
monkeypatch.setattr(module, "Tokenizer", tokenizer_mock)
out_dir = tmp_path / "out"
stdout = StringIO()
with redirect_stdout(stdout), mock.patch("sys.argv", ["lora.py", str(fake_checkpoint_dir)]):
module.setup(
fake_checkpoint_dir,
data=Alpaca(
download_dir=alpaca_path.parent, file_name=alpaca_path.name, val_split_fraction=0.5, num_workers=0
),
out_dir=out_dir,
precision="32-true",
train=TrainArgs(global_batch_size=1, save_interval=2, epochs=1, max_steps=6, micro_batch_size=1),
eval=EvalArgs(interval=2, max_iters=2, max_new_tokens=1),
)
out_dir_contents = set(os.listdir(out_dir))
checkpoint_dirs = {"step-000002", "step-000004", "step-000006", "final"}
assert checkpoint_dirs.issubset(out_dir_contents)
assert all((out_dir / p).is_dir() for p in checkpoint_dirs)
for checkpoint_dir in checkpoint_dirs:
assert {p.name for p in (out_dir / checkpoint_dir).iterdir()} == {
"lit_model.pth.lora",
"model_config.yaml",
"tokenizer_config.json",
"tokenizer.json",
"hyperparameters.yaml",
"prompt_style.yaml",
}
assert (out_dir / "logs" / "csv" / "version_0" / "metrics.csv").is_file()
logs = stdout.getvalue()
assert logs.count("(step)") == 6
assert logs.count("val loss") == 4 # 3 validations + 1 final validation
assert logs.count("Final evaluation") == 1
assert "of trainable parameters: 512" in logs
def test_lora_init_when_linear_overridden():
class MyLinear(torch.nn.Linear):
def __init__(self, *args, **kwargs):
# this needs to be implemented to demonstrate the failure
super().__init__(*args, **kwargs)
original_linear = torch.nn.Linear
# Our bnb does this sort of monkey patching
torch.nn.Linear = MyLinear
layer = LoRAQKVLinear(1, 1, 1, 1, 1)
assert isinstance(layer.linear, original_linear)
torch.nn.Linear = original_linear
@pytest.mark.parametrize(
("apply_to", "target_layer_names", "mlp_class_name"),
(
("lora_projection", "transformer.h.0.attn.proj", "GptNeoxMLP"),
("lora_mlp", {"transformer.h.0.mlp.fc", "transformer.h.0.mlp.proj"}, "GptNeoxMLP"),
("lora_head", "lm_head", "GptNeoxMLP"),
("lora_projection", "transformer.h.0.attn.proj", "LLaMAMLP"),
("lora_mlp", {"transformer.h.0.mlp.fc_1", "transformer.h.0.mlp.fc_2", "transformer.h.0.mlp.proj"}, "LLaMAMLP"),
("lora_head", "lm_head", "LLaMAMLP"),
),
)
def test_lora_linear_utilization(apply_to, target_layer_names, mlp_class_name):
config = Config(
n_layer=1,
n_head=4,
n_embd=8,
block_size=1,
vocab_size=1,
lora_r=2,
lora_alpha=8,
lora_dropout=0.1,
mlp_class_name=mlp_class_name,
intermediate_size=8 * 3,
**{apply_to: True},
)
model = LoRAGPT(config)
state_dict = model.state_dict()
if isinstance(target_layer_names, str):
target_layer_names = {target_layer_names}
lora_sublayers = (".lora_A", ".lora_B")
# check that all the target layers have LoRA weights
for layer_name in target_layer_names:
for lora_sublayer in lora_sublayers:
assert layer_name + lora_sublayer in state_dict
# check that only target layers have LoRA weights
lora_params = [k for k in state_dict if k.endswith(lora_sublayers)]
lora_params = {k[:-7] for k in lora_params}
assert lora_params == target_layer_names
@torch.inference_mode()
@pytest.mark.parametrize(
"apply_to", (None, "lora_query", "lora_key", "lora_value", "lora_projection", "lora_mlp", "lora_head")
)
def test_lora_gpt_apply_lora_forward_no_exception(apply_to):
config = Config(n_layer=1, n_head=4, n_embd=8, block_size=1, vocab_size=1, lora_r=2, lora_alpha=8, lora_dropout=0.1)
if apply_to:
setattr(config, apply_to, True)
input_ids = torch.tensor([[1]])
model = LoRAGPT(config)
model.eval()
model(input_ids)
@torch.inference_mode()
@pytest.mark.parametrize("n_query_groups", (1, 2, 3, 6))
@pytest.mark.parametrize("apply_to", product((False, True), repeat=3))
def test_lora_gpt_query_groups_merge_and_forward_no_exception(n_query_groups, apply_to):
keys = ("lora_query", "lora_key", "lora_value")
values = apply_to
apply_to = dict(zip(keys, values))
config = Config(
n_layer=1,
n_head=6,
n_embd=12,
block_size=1,
vocab_size=1,
lora_r=2,
lora_alpha=8,
lora_dropout=0.1,
n_query_groups=n_query_groups,
**apply_to,
)
model = LoRAGPT(config)
merge_lora_weights(model)
input_ids = torch.tensor([[1]])
model(input_ids)
@torch.inference_mode()
@pytest.mark.parametrize("head_size", (1, 2, 4))
@pytest.mark.parametrize("n_head", (1, 2, 3, 6, 12))
@pytest.mark.parametrize(
"enable_lora",
[
(False, False, True),
(False, True, False),
(False, True, True),
(True, False, False),
(True, False, True),
(True, True, False),
(True, True, True),
],
)
def test_lora_qkv_linear_compare_conv1d(head_size, n_head, enable_lora):
C = 12
layer = LoRAQKVLinear(
C, 3 * C, head_size=head_size, n_head=n_head, n_query_groups=n_head, r=2, enable_lora=enable_lora
)
x = torch.randn((1, 1, C))
a = F.linear(x, layer.lora_A).transpose(-2, -1) # after_A
b = layer.lora_B.data.unsqueeze(-1)
# original PyTorch conv1d function output
conv1d_pytorch = F.conv1d(a, b, groups=sum(layer.enable_lora))
# custom conv1d
conv1d_custom = layer.conv1d(a, b)
# custom conv1d forced to split, apply and concat tensors
layer.n_head = layer.n_query_groups + 1
conv1d_custom_forced = layer.conv1d(a, b)
assert torch.allclose(conv1d_pytorch, conv1d_custom)
assert torch.allclose(conv1d_pytorch, conv1d_custom_forced)
@pytest.mark.parametrize(("rank", "expected_merged"), ((0, False), (1, True)))
def test_lora_linear_weights_merged_status(rank, expected_merged):
layer = LoRALinear(10, 10, r=rank)
assert not layer.merged
layer.merge()
assert layer.merged == expected_merged
@pytest.mark.parametrize(
("rank", "enable_lora", "expected_merged"),
((0, True, False), (1, True, True), (0, False, False), (1, False, False)),
)
def test_lora_qkv_linear_weights_merged_status(rank, enable_lora, expected_merged):
C = 10
layer = LoRAQKVLinear(C, 3 * C, head_size=5, n_head=2, n_query_groups=2, r=rank, enable_lora=enable_lora)
assert not layer.merged
layer.merge()
assert layer.merged == expected_merged
@RunIf(min_cuda_gpus=1)
def test_lora_merge_with_bitsandbytes():
if not _BITSANDBYTES_AVAILABLE:
pytest.skip("BNB not available")
import bitsandbytes as bnb
config = Config(
n_layer=1,
n_head=2,
n_embd=8,
block_size=8,
vocab_size=8,
lora_r=8,
lora_alpha=8,
lora_dropout=0.1,
lora_query=True,
lora_value=True,
lora_projection=True,
)
fabric = Fabric(devices=1, plugins=BitsandbytesPrecision("nf4", dtype=torch.bfloat16, ignore_modules={"lm_head"}))
model = LoRAGPT(config)
mark_only_lora_as_trainable(model)
from bitsandbytes.optim import PagedAdamW
optimizer = PagedAdamW(model.parameters(), lr=1.0)
model, optimizer = fabric.setup(model, optimizer)
model.train()
attn_proj = model.transformer.h[0].attn.proj
initial_weight = attn_proj.linear.weight.clone()
initial_weight_kwargs = attn_proj.linear.weight.__dict__
# this was skipped
assert model.lm_head.linear.weight.dtype is torch.float32
assert attn_proj.linear.weight.dtype is torch.uint8
# perform an update to the LoRA weights
y = model(torch.randint(0, 8, size=(2, 4), dtype=torch.int64, device=fabric.device))
loss = y.sum()
fabric.backward(loss)
optimizer.step()
optimizer.zero_grad()
# the weight remains unchanged (only lora A and B change)
assert torch.equal(attn_proj.linear.weight, initial_weight)
# calling merge() multiple times in a row should not merge multiple times
merge_lora_weights(model)
assert attn_proj.merged
weight_after = attn_proj.linear.weight.clone()
merge_lora_weights(model)
merge_lora_weights(model)
assert torch.equal(attn_proj.linear.weight, weight_after)
# check that `W_after = W_initial + (A x B)`
delta_w = attn_proj.get_lora_AB()
# dequantize initial weight and sum with delta_w
initial_weight_data = (
bnb.functional.dequantize_4bit(initial_weight.data, initial_weight_kwargs["quant_state"]) + delta_w
)
# quantize again
initial_weight_data = bnb.nn.Params4bit(
initial_weight_data.to("cpu"), requires_grad=False, **initial_weight_kwargs
).to(initial_weight.device)
torch.testing.assert_close(weight_after, initial_weight_data)
def test_lora_gpt_init_weights():
config = Config(n_layer=1, n_head=6, n_embd=12, block_size=1, vocab_size=1, lora_r=2, lora_alpha=8, lora_head=True)
model = LoRAGPT(config)
param = model.lm_head.lora_B.data
assert (param == 0).all()
torch.nn.init.constant_(param, 1.23)
assert (param != 0).any()
model.apply(model._init_weights)
assert (param == 0).all()
@pytest.mark.parametrize("name", [c["name"] for c in config_module.configs])
def test_base_model_can_be_lora_loaded(name):
kwargs = {"n_layer": 2, "n_head": 8, "n_query_groups": 4, "n_embd": 16, "padded_vocab_size": 32}
base_model = BaseGPT.from_name(name, **kwargs)
base_model_state_dict = base_model.state_dict()
lora_model = LoRAGPT.from_name(
name,
**kwargs,
lora_r=1,
lora_query=True,
lora_key=True,
lora_value=True,
lora_projection=True,
lora_mlp=True,
lora_head=True,
)
keys = lora_model.load_state_dict(base_model_state_dict, strict=False)
assert not keys.unexpected_keys
for k in keys.missing_keys:
assert lora_filter(k, None)
@RunIf(dynamo=True)
@torch.inference_mode()
def test_lora_compile():
model = LoRAGPT.from_name(
"pythia-14m",
n_layer=3,
lora_r=8,
lora_alpha=8,
lora_dropout=0.1,
lora_query=True,
lora_key=True,
lora_value=True,
lora_projection=True,
lora_mlp=True,
lora_head=True,
)
x = torch.randint(model.config.vocab_size, size=(2, model.config.block_size), dtype=torch.int64)
explanation = torch._dynamo.explain(model)(x)
assert isinstance(explanation, debugging.ExplainOutput)
assert explanation.graph_count == 1
assert explanation.graph_break_count == 0
model = LoRAGPT(model.config)
model.set_kv_cache(2)
input_pos = torch.arange(model.config.block_size)
explanation = torch._dynamo.explain(model)(x, input_pos)
assert isinstance(explanation, debugging.ExplainOutput)
assert explanation.graph_count == 1
assert explanation.graph_break_count == 0
@torch.inference_mode()
def test_against_hf_mixtral():
device = torch.device("cpu")
dtype = torch.float32
ours_config = Config.from_name(
"Mixtral-8x7B-Instruct-v0.1",
padded_vocab_size=10000,
n_layer=2,
n_embd=32,
n_head=8,
n_query_groups=2,
intermediate_size=86,
n_expert=4,
lora_r=1,
lora_key=True,
lora_value=True,
)
T = 5
theirs_config = MixtralConfig(
vocab_size=ours_config.padded_vocab_size,
hidden_size=ours_config.n_embd,
num_attention_heads=ours_config.n_head,
num_hidden_layers=ours_config.n_layer,
intermediate_size=ours_config.intermediate_size,
max_position_embeddings=T,
rms_norm_eps=ours_config.norm_eps,
num_key_value_heads=ours_config.n_query_groups,
rope_theta=ours_config.rope_base,
num_local_experts=ours_config.n_expert,
)
assert ours_config.intermediate_size == theirs_config.intermediate_size
theirs_model = MixtralForCausalLM(theirs_config).to(device)
theirs_state_dict = theirs_model.state_dict()
state_dict = {}
copy_weights_hf_llama(ours_config, {}, state_dict, theirs_state_dict)
ours_model = LoRAGPT(ours_config).to(device)
keys = ours_model.load_state_dict(state_dict, strict=False)
assert not keys.unexpected_keys
for k in keys.missing_keys:
assert lora_filter(k, None)
# test end to end
x = torch.tensor([[9856, 23, 491, 1536, 304], [23, 345, 65, 123, 321]], dtype=torch.int32, device=device)
assert x.size(1) == T
ours_y = ours_model(x)
theirs_y = theirs_model(x)["logits"].to(dtype) # HF converts logits to float
torch.testing.assert_close(ours_y, theirs_y)
@torch.inference_mode()
@pytest.mark.parametrize("model_name", ["gemma-2b", "gemma-7b"])
def test_against_hf_gemma(model_name):
device = torch.device("cpu")
dtype = torch.float32
T = 5
ours_config = Config.from_name(
model_name,
n_layer=2,
n_head=16,
n_embd=32,
head_size=4,
intermediate_size=86,
lora_r=1,
lora_query=True,
lora_key=True,
lora_value=True,
)
theirs_config = GemmaConfig(
vocab_size=ours_config.padded_vocab_size,
hidden_size=ours_config.n_embd,
head_dim=ours_config.head_size,
num_attention_heads=ours_config.n_head,
num_hidden_layers=ours_config.n_layer,
intermediate_size=ours_config.intermediate_size,
max_position_embeddings=T,
rms_norm_eps=ours_config.norm_eps,
num_key_value_heads=ours_config.n_query_groups,
rope_theta=ours_config.rope_base,
attention_bias=ours_config.bias,
tie_word_embeddings=True,
hidden_act="gelu_pytorch_tanh",
)
assert ours_config.intermediate_size == theirs_config.intermediate_size
theirs_model = GemmaForCausalLM(theirs_config).to(device)
theirs_state_dict = theirs_model.state_dict()
# Gemma weights are shipped without `lm_head.weight`
theirs_state_dict.pop("lm_head.weight")
state_dict = {}
copy_weights_hf_llama(ours_config, {}, state_dict, theirs_state_dict)
ours_model = LoRAGPT(ours_config).to(device)
keys = ours_model.load_state_dict(state_dict, strict=False)
assert not keys.unexpected_keys
for k in keys.missing_keys:
assert lora_filter(k, None)
# test end to end
x = torch.tensor([[9856, 23, 491, 1536, 304]], dtype=torch.int32, device=device)
assert x.size(1) == T
ours_y = ours_model(x)
theirs_y = theirs_model(x)["logits"].to(dtype) # HF converts logits to float
torch.testing.assert_close(ours_y, theirs_y)
@torch.inference_mode()
@pytest.mark.parametrize("model_name", ("gemma-2-9b", "gemma-2-27b"))
def test_against_original_gemma_2(model_name):
device = torch.device("cpu")
dtype = torch.float32
T = 20
ours_config = Config.from_name(
model_name,
block_size=T,
sliding_window_size=T // 2,
n_layer=2,
n_head=16,
n_embd=32,
intermediate_size=86,
)
theirs_config = Gemma2Config(
vocab_size=ours_config.padded_vocab_size,
hidden_size=ours_config.n_embd,
head_dim=ours_config.head_size,
num_attention_heads=ours_config.n_head,
num_hidden_layers=ours_config.n_layer,
intermediate_size=ours_config.intermediate_size,
max_position_embeddings=ours_config.block_size,
sliding_window=ours_config.sliding_window_size,
rms_norm_eps=ours_config.norm_eps,
num_key_value_heads=ours_config.n_query_groups,
rope_theta=ours_config.rope_base,
attention_bias=ours_config.bias,
tie_word_embeddings=True,
hidden_act="gelu_pytorch_tanh",
attn_logit_softcapping=ours_config.attention_logit_softcapping,
final_logit_softcapping=ours_config.final_logit_softcapping,
initializer_range=1.0, # to make the affect of attention_logit_softcapping more prominent
attn_implementation="eager",
query_pre_attn_scalar=ours_config.attention_scores_scalar,
)
assert ours_config.intermediate_size == theirs_config.intermediate_size
theirs_model = Gemma2ForCausalLM(theirs_config).to(device)
theirs_state_dict = theirs_model.state_dict()
# Gemma weights are shipped without `lm_head.weight`
theirs_state_dict.pop("lm_head.weight")
state_dict = {}
copy_weights_gemma_2(ours_config, {}, state_dict, theirs_state_dict)
ours_model = LoRAGPT(ours_config).to(device)
ours_model.load_state_dict(state_dict)
# test end to end
x = torch.randint(low=0, high=ours_config.padded_vocab_size, size=(T,), device=device).unsqueeze(0)
assert x.size(1) == T
ours_y = ours_model(x)
theirs_y = theirs_model(x)["logits"].to(dtype) # HF converts logits to float
torch.testing.assert_close(ours_y, theirs_y)
@RunIf(min_cuda_gpus=1)
def test_lora_bitsandbytes(monkeypatch, tmp_path, fake_checkpoint_dir, alpaca_path):
if not _BITSANDBYTES_AVAILABLE:
pytest.skip("BNB not available")
from bitsandbytes.optim import PagedAdamW
model_config = dict(
block_size=128,
n_layer=2,
n_embd=8,
n_head=4,
padded_vocab_size=8,
bias=True,
lora_r=8,
lora_alpha=8,
lora_dropout=0.1,
lora_query=True,
lora_value=True,
lora_projection=True,
)
(fake_checkpoint_dir / "model_config.yaml").write_text(yaml.dump(model_config))
tokenizer_mock = Mock()
tokenizer_mock.return_value = tokenizer_mock
tokenizer_mock.encode = lambda *_, **__: torch.tensor([3, 2, 1])
monkeypatch.setattr(module, "Tokenizer", tokenizer_mock)
monkeypatch.setattr(module, "load_checkpoint", Mock())
monkeypatch.setattr(module, "merge_lora", Mock())
train_mock = Mock()
monkeypatch.setattr(module, "fit", train_mock)
stdout = StringIO()
with redirect_stdout(stdout), mock.patch("sys.argv", ["full.py", str(fake_checkpoint_dir)]):
module.setup(
fake_checkpoint_dir,
data=Alpaca(
download_dir=alpaca_path.parent, file_name=alpaca_path.name, val_split_fraction=0.5, num_workers=0
),
out_dir=tmp_path,
precision="16-true",
quantize="bnb.nf4-dq",
)
args, kwargs = train_mock.call_args
fabric, model, optimizer, *_ = args
assert isinstance(fabric.strategy.precision, BitsandbytesPrecision)
assert isinstance(optimizer, _FabricOptimizer)
assert isinstance(optimizer._optimizer, PagedAdamW)
dtype_to_name = {"torch.uint8": set(), "torch.float16": set()}
for name, layer in model.named_parameters():
name = name[len("_forward_module.") :]
dtype_to_name[str(layer.dtype)].add(name)
assert dtype_to_name == {
"torch.uint8": {
"transformer.h.0.attn.attn.linear.weight",
"transformer.h.0.attn.proj.linear.weight",
"transformer.h.0.mlp.fc.linear.weight",
"transformer.h.1.mlp.proj.linear.weight",
"transformer.h.0.mlp.proj.linear.weight",
"transformer.h.1.attn.attn.linear.weight",
"lm_head.linear.weight",
"transformer.h.1.attn.proj.linear.weight",
"transformer.h.1.mlp.fc.linear.weight",
},
"torch.float16": {
"transformer.h.0.attn.attn.lora_B",
"transformer.h.0.norm_2.weight",
"transformer.wte.weight",
"transformer.h.1.mlp.fc.linear.bias",
"transformer.ln_f.bias",
"transformer.h.1.attn.attn.lora_B",
"transformer.h.1.attn.proj.linear.bias",
"transformer.h.1.norm_1.weight",
"transformer.h.1.attn.attn.linear.bias",
"transformer.h.1.attn.attn.lora_A",
"transformer.h.1.norm_1.bias",
"transformer.h.1.norm_2.bias",
"transformer.h.0.attn.proj.linear.bias",
"transformer.h.0.norm_1.bias",
"transformer.h.0.mlp.proj.linear.bias",
"transformer.h.0.mlp.fc.linear.bias",
"transformer.h.0.norm_2.bias",
"transformer.ln_f.weight",
"transformer.h.0.attn.attn.lora_A",
"transformer.h.1.norm_2.weight",
"transformer.h.1.mlp.proj.linear.bias",
"transformer.h.0.norm_1.weight",
"transformer.h.0.attn.attn.linear.bias",
},
}
assert {p.name for p in tmp_path.rglob("*.lora")} == {"lit_model.pth.lora"}
state_dict = torch.load(tmp_path / "final" / "lit_model.pth.lora")
assert len(state_dict) == 1
dtype_to_name = {"torch.float16": set()}
for name, layer in state_dict["model"].items():
dtype_to_name[str(layer.dtype)].add(name)
assert dtype_to_name == {
"torch.float16": {
"transformer.h.1.attn.attn.lora_A",
"transformer.h.0.attn.attn.lora_A",
"transformer.h.0.attn.attn.lora_B",
"transformer.h.1.attn.attn.lora_B",
}
}
logs = stdout.getvalue()
assert "of trainable parameters: 512" in logs
assert "of non-trainable parameters: 1,888" in logs
@RunIf(standalone=True, min_cuda_gpus=2)
def test_lora_model_fsdp_init():
config = Config(
n_layer=1,
n_head=2,
n_embd=8,
block_size=8,
vocab_size=8,
lora_r=8,
lora_alpha=8,
lora_dropout=0.1,
lora_query=True,
lora_value=False,
lora_projection=True,
)
fabric = Fabric(devices=2, strategy="fsdp", precision="16-true")
fabric.launch()
with fabric.init_module(empty_init=True):
model = LoRAGPT(config)
x = torch.randint(0, config.padded_vocab_size, size=(2, config.block_size), dtype=torch.int64, device=fabric.device)
model = fabric.setup(model)
y = model(x)
assert y.shape == torch.Size([2, 8, 512])
# verify that all the parameters, buffers and other attributes aren't on `meta` device
for m in model.modules():
for p_name, parameter in m.named_parameters():
assert not parameter.is_meta, f"Parameter `{p_name}` isn't materialized."
for b_name, buffer in m._buffers.items():
assert not buffer.is_meta, f"Buffer `{b_name}` isn't materialized."
for attr_name, attr_value in m.__dict__.items():
if isinstance(attr_value, torch.Tensor):
assert not attr_value.is_meta, f"Attribute `{attr_name}` isn't materialized."