-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathimagemorphparms_algorithm.py
505 lines (434 loc) · 24.5 KB
/
imagemorphparms_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# -*- coding: utf-8 -*-
"""
/***************************************************************************
ProcessingUMEP
A QGIS plugin
UMEP for processing toolbox
Generated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/
-------------------
begin : 2020-04-02
copyright : (C) 2020 by Fredrik Lindberg
email : [email protected]
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
"""
__author__ = 'Fredrik Lindberg'
__date__ = '2020-04-02'
__copyright__ = '(C) 2020 by Fredrik Lindberg'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
from qgis.PyQt.QtCore import QCoreApplication, QVariant
from qgis.core import (QgsProcessing,
QgsProcessingAlgorithm,
QgsProcessingParameterString,
QgsProcessingParameterBoolean,
QgsProcessingParameterNumber,
QgsProcessingParameterFolderDestination,
QgsProcessingParameterRasterLayer,
QgsProcessingParameterEnum,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterField,
QgsProcessingException,
QgsFeature,
QgsVectorFileWriter,
QgsVectorDataProvider,
QgsField,
QgsProcessingParameterDefinition)
from qgis.PyQt.QtGui import QIcon
from osgeo import gdal, osr, ogr
from osgeo.gdalconst import *
import os
import numpy as np
import inspect
from pathlib import Path
import sys
from ..util import RoughnessCalcFunctionV2 as rg
from ..util import imageMorphometricParms_v2 as morph
from ..functions import wallalgorithms as wa
from ..util import ssParms as ss
class ProcessingImageMorphParmsAlgorithm(QgsProcessingAlgorithm):
"""
This algorithm is a processing version of Image Morphometric Calculator Point
"""
INPUT_POLYGONLAYER = 'INPUT_POLYGONLAYER'
ID_FIELD = 'ID_FIELD'
SERACH_METHOD = 'SEARCH_METHOD'
INPUT_DISTANCE = 'INPUT_DISTANCE'
INPUT_INTERVAL = 'INPUT_INTERVAL'
INPUT_DSM = 'INPUT_DSM'
INPUT_DEM = 'INPUT_DEM'
INPUT_DSMBUILD = 'INPUT_DSMBUILD'
USE_DSMBUILD = 'USE_DSM_BUILD'
ROUGH = 'ROUGH'
FILE_PREFIX = 'FILE_PREFIX'
OUTPUT_DIR = 'OUTPUT_DIR'
IGNORE_NODATA = 'IGNORE_NODATA'
ATTR_TABLE = 'ATTR_TABLE'
CALC_SS = 'CALC_SS'
#SS_HEIGHTS = 'SS_HEIGHTS'
INPUT_CDSM = 'INPUT_CDSM'
def initAlgorithm(self, config):
self.rough = ((self.tr('Rule of thumb'), '0'),
(self.tr('Raupach (1994/95)'), '1'),
(self.tr('Simplified Bottema (1995)'), '2'),
(self.tr('MacDonald et al. (1998)'), '3'),
(self.tr('Millward-Hopkins et al. (2011)'), '4'),
(self.tr('Kanda et al. (2013)'), '5'))
self.search = ((self.tr('Throughout the grid extent'), '0'),
(self.tr('From grid centroid'), '1'))
self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT_POLYGONLAYER,
self.tr('Vector polygon grid'), [QgsProcessing.TypeVectorPolygon]))
self.addParameter(QgsProcessingParameterField(self.ID_FIELD,
self.tr('ID field'),'', self.INPUT_POLYGONLAYER, QgsProcessingParameterField.Numeric))
self.addParameter(QgsProcessingParameterEnum(self.SERACH_METHOD,
self.tr('Search method'),
options=[i[0] for i in self.search], defaultValue=0))
self.addParameter(QgsProcessingParameterNumber(self.INPUT_DISTANCE,
self.tr('Search distance from grid cell centroid (m)'),
QgsProcessingParameterNumber.Integer,
QVariant(200), False, minValue=0))
self.addParameter(QgsProcessingParameterNumber(self.INPUT_INTERVAL,
self.tr('Wind direction search interval (degree)'),
QgsProcessingParameterNumber.Double,
QVariant(5), False, minValue=0.1, maxValue=360.))
self.addParameter(QgsProcessingParameterBoolean(self.USE_DSMBUILD,
self.tr("Raster DSM (only 3D building or vegetation objects) exist"), defaultValue=False))
self.addParameter(QgsProcessingParameterRasterLayer(self.INPUT_DSM,
self.tr('Raster DSM (3D objects and ground)'), '', True))
self.addParameter(QgsProcessingParameterRasterLayer(self.INPUT_DEM,
self.tr('Raster DEM (only ground)'), '', True))
self.addParameter(QgsProcessingParameterRasterLayer(self.INPUT_DSMBUILD,
self.tr('Raster DSM (only 3D objects)'), '', True))
self.addParameter(QgsProcessingParameterEnum(self.ROUGH,
self.tr('Roughness calculation method'),
options=[i[0] for i in self.rough], defaultValue=0))
self.addParameter(QgsProcessingParameterString(self.FILE_PREFIX,
self.tr('File prefix')))
self.addParameter(QgsProcessingParameterBoolean(self.IGNORE_NODATA,
self.tr("Ignore NoData pixels"), defaultValue=True))
self.addParameter(QgsProcessingParameterBoolean(self.ATTR_TABLE,
self.tr("Add result to polygon grid attribute table"), defaultValue=False))
self.addParameter(QgsProcessingParameterFolderDestination(self.OUTPUT_DIR,
self.tr('Output folder')))
# Advanced parameters (SS)
ss = QgsProcessingParameterBoolean(self.CALC_SS,
self.tr("Calculate parameters for SUEWS/SS"), defaultValue=False, optional=True)
ss.setFlags(ss.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
self.addParameter(ss)
sscdsm = QgsProcessingParameterRasterLayer(self.INPUT_CDSM,
self.tr('Raster vegetation DSM (CDSM)'), '', True)
sscdsm.setFlags(sscdsm.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
self.addParameter(sscdsm)
self.plugin_dir = os.path.dirname(__file__)
if not (os.path.isdir(self.plugin_dir + '/data')):
os.mkdir(self.plugin_dir + '/data')
self.dir_poly = self.plugin_dir + '/data/poly_temp.shp'
def processAlgorithm(self, parameters, context, feedback):
# InputParameters
inputPolygonlayer = self.parameterAsVectorLayer(parameters, self.INPUT_POLYGONLAYER, context)
idField = self.parameterAsFields(parameters, self.ID_FIELD, context)
searchMethod = self.parameterAsString(parameters, self.SERACH_METHOD, context)
inputDistance = self.parameterAsDouble(parameters, self.INPUT_DISTANCE, context)
inputInterval = self.parameterAsDouble(parameters, self.INPUT_INTERVAL, context)
useDsmBuild = self.parameterAsBool(parameters, self.USE_DSMBUILD, context)
dsmlayer = None
demlayer = None
ro = self.parameterAsString(parameters, self.ROUGH, context)
filePrefix = self.parameterAsString(parameters, self.FILE_PREFIX, context)
attrTable = self.parameterAsBool(parameters, self.ATTR_TABLE, context)
ignoreNodata = self.parameterAsBool(parameters, self.IGNORE_NODATA, context)
outputDir = self.parameterAsString(parameters, self.OUTPUT_DIR, context)
calcSS = self.parameterAsBool(parameters, self.CALC_SS, context)
if parameters['OUTPUT_DIR'] == 'TEMPORARY_OUTPUT':
if not (os.path.isdir(outputDir)):
os.mkdir(outputDir)
# preparing headers etc.
degree = float(inputInterval)
pre = filePrefix
headerAniso = ' Wd pai fai zH zHmax zHstd zd z0 noOfPixels'
numformat = '%3d %4.3f %4.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.0f'
headerIso = ' id pai fai zH zHmax zHstd zd z0 wai ' #moved inside loop
numformat2 = '%3d %4.3f %4.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f'
#adding parameters for SUEWS/SS
if calcSS:
headerSS = ' z paib bScale paiv vScale '
numformatSS = '%3d %4.3f %4.3f %4.3f %4.3f'
imp_point = 0 # only used in menu-based tool
imid = int(searchMethod)
arrmat = np.empty((1, 9))
# temporary fix for mac, ISSUE #15
pf = sys.platform
if pf == 'darwin' or pf == 'linux2' or pf == 'linux':
if not os.path.exists(outputDir + '/' + pre):
os.makedirs(outputDir + '/' + pre)
# poly = inputPolygonlayer
poly_field = idField
vlayer = inputPolygonlayer
prov = vlayer.dataProvider()
fields = prov.fields()
idx = vlayer.fields().indexFromName(poly_field[0])
# dir_poly = self.plugin_dir + '/data/poly_temp.shp'
nGrids = vlayer.featureCount()
index = 1
feedback.setProgressText("Number of grids to analyse: " + str(nGrids))
# #Calculate Z0m and Zdm depending on the Z0 method
if int(ro) == 0:
Roughnessmethod = 'RT'
elif int(ro) == 1:
Roughnessmethod = 'Rau'
elif int(ro) == 2:
Roughnessmethod = 'Bot'
elif int(ro) == 3:
Roughnessmethod = 'Mac'
elif int(ro) == 4:
Roughnessmethod = 'Mho'
else:
Roughnessmethod = 'Kan'
# looping through each grid polygon
for f in vlayer.getFeatures():
feedback.setProgress(int((index * 100) / nGrids))
if feedback.isCanceled():
feedback.setProgressText("Calculation cancelled")
break
index += 1
attributes = f.attributes()
geometry = f.geometry()
feature = QgsFeature()
feature.setAttributes(attributes)
feature.setGeometry(geometry)
if imid == 1: # from centroid point
r = inputDistance
y = f.geometry().centroid().asPoint().y()
x = f.geometry().centroid().asPoint().x()
bbox = (x - r, y + r, x + r, y - r)
else: # from cutline polygon
r = 0 # Used as info to separate from IMP point to grid
writer = QgsVectorFileWriter(self.dir_poly, "CP1250", fields, prov.wkbType(),
prov.crs(), "ESRI shapefile")
if writer.hasError() != QgsVectorFileWriter.NoError:
raise QgsProcessingException("Error when creating shapefile: ", str(writer.hasError()))
writer.addFeature(feature)
del writer
VectorDriver = ogr.GetDriverByName("ESRI Shapefile")
Vector = VectorDriver.Open(self.dir_poly, 0) #self.dir_poly
layer = Vector.GetLayer()
feature = layer.GetFeature(0)
geom = feature.GetGeometryRef()
minX, maxX, minY, maxY = geom.GetEnvelope()
bbox = (minX, maxY, maxX, minY) # Reorder bbox to use with gdal_translate
Vector.Destroy()
if useDsmBuild: # Only building heights
dsmlayer = self.parameterAsRasterLayer(parameters, self.INPUT_DSMBUILD, context)
if dsmlayer is None:
raise QgsProcessingException("No valid building DSM raster layer is selected")
provider = dsmlayer.dataProvider()
filePath_dsm_build = str(provider.dataSourceUri())
# added gdal.Warp() for irregular grids
bigraster = gdal.Open(filePath_dsm_build)
if imid == 1:
gdal.Translate(self.plugin_dir + '/data/clipdsm.tif', bigraster, projWin=bbox)
else:
clip_spec = gdal.WarpOptions(format="GTiff", cutlineDSName=self.dir_poly, cropToCutline=True)
gdal.Warp(self.plugin_dir + '/data/clipdsm.tif', bigraster, options=clip_spec)
bigraster = None
dataset = gdal.Open(self.plugin_dir + '/data/clipdsm.tif')
dsm_array = dataset.ReadAsArray().astype(float)
sizex = dsm_array.shape[0]
sizey = dsm_array.shape[1]
dem_array = np.zeros((sizex, sizey))
ndDEM = -9999
else: # Both building ground heights
dsmlayer = self.parameterAsRasterLayer(parameters, self.INPUT_DSM, context)
demlayer = self.parameterAsRasterLayer(parameters, self.INPUT_DEM, context)
if dsmlayer is None:
raise QgsProcessingException("No valid ground and building DSM raster layer is selected")
if demlayer is None:
raise QgsProcessingException("No valid ground DEM raster layer is selected")
provider = dsmlayer.dataProvider()
filePath_dsm = str(provider.dataSourceUri())
provider = demlayer.dataProvider()
filePath_dem = str(provider.dataSourceUri())
# added gdal.Warp() for irregular grids
bigraster = gdal.Open(filePath_dsm)
if imid == 1:
gdal.Translate(self.plugin_dir + '/data/clipdsm.tif', bigraster, projWin=bbox)
else:
clip_spec = gdal.WarpOptions(format="GTiff", cutlineDSName=self.dir_poly, cropToCutline=True)
gdal.Warp(self.plugin_dir + '/data/clipdsm.tif', bigraster, options=clip_spec)
bigraster = None
bigraster = gdal.Open(filePath_dem)
if imid == 1:
gdal.Translate(self.plugin_dir + '/data/clipdem.tif', bigraster, projWin=bbox)
else:
clip_spec = gdal.WarpOptions(format="GTiff", cutlineDSName=self.dir_poly, cropToCutline=True)
gdal.Warp(self.plugin_dir + '/data/clipdem.tif', bigraster, options=clip_spec)
bigraster = None
dataset = gdal.Open(self.plugin_dir + '/data/clipdsm.tif')
dsm_array = dataset.ReadAsArray().astype(float)
dataset2 = gdal.Open(self.plugin_dir + '/data/clipdem.tif')
dem_array = dataset2.ReadAsArray().astype(float)
ndDEM = dataset2.GetRasterBand(1).GetNoDataValue()
if not (dsm_array.shape[0] == dem_array.shape[0]) & (dsm_array.shape[1] == dem_array.shape[1]):
raise QgsProcessingException("All grids must be of same extent and resolution")
if calcSS: #add vegetion (if present) for SUEWS/SS
cdsmlayer = self.parameterAsRasterLayer(parameters, self.INPUT_CDSM, context)
if cdsmlayer is None:
cdsm_array = dsm_array * 0.0
ndCDSM = -9999
else:
provider = cdsmlayer.dataProvider()
filePath_cdsm = str(provider.dataSourceUri())
bigraster = gdal.Open(filePath_cdsm)
if imid == 1:
gdal.Translate(self.plugin_dir + '/data/clipdsm.tif', bigraster, projWin=bbox)
else:
clip_spec = gdal.WarpOptions(format="GTiff", cutlineDSName=self.dir_poly, cropToCutline=True)
gdal.Warp(self.plugin_dir + '/data/clipcdsm.tif', bigraster, options=clip_spec)
bigraster = None
dataseti = gdal.Open(self.plugin_dir + '/data/clipcdsm.tif')
ndCDSM = dataseti.GetRasterBand(1).GetNoDataValue()
cdsm_array = dataseti.ReadAsArray().astype(float)
geotransform = dataset.GetGeoTransform()
scale = 1 / geotransform[1]
nd = dataset.GetRasterBand(1).GetNoDataValue()
if nd is None:
feedback.pushWarning("NoData in DSM layer not set. Tick off 'Ignore NoData pixels' to make use of this tool or assign NoData value to your raster data.")
else:
feedback.setProgressText("NoData-value in DSM-layer: " + str(nd))
nodata_test = (dsm_array == nd)
if ignoreNodata:
if np.sum(dsm_array) == (dsm_array.shape[0] * dsm_array.shape[1] * nd):
feedback.setProgressText("Grid " + str(f.attributes()[idx]) + " not calculated. Includes Only NoData Pixels")
cal = 0
else:
feedback.setProgressText("Grid " + str(f.attributes()[idx]) + " being calculated.")
cal = 1
else:
if nodata_test.any():
feedback.setProgressText("Grid " + str(f.attributes()[idx]) + " not calculated. Includes NoData Pixels")
cal = 0
else:
cal = 1
feedback.setProgressText("Grid " + str(f.attributes()[idx]) + " being calculated.")
if cal == 1:
#set nodata to same
dsm_array[dsm_array == nd] = -9999
dem_array[dem_array == ndDEM] = -9999
if calcSS:
cdsm_array[cdsm_array == ndCDSM] = -9999
#calculate morphometric params
immorphresult = morph.imagemorphparam_v2(dsm_array, dem_array, scale, imid, degree, feedback, imp_point)
zH = immorphresult["zH"]
fai = immorphresult["fai"]
pai = immorphresult["pai"]
zMax = immorphresult["zHmax"]
zSdev = immorphresult["zH_sd"]
zd, z0 = rg.RoughnessCalcMany(Roughnessmethod, zH, fai, pai, zMax, zSdev)
# save to file
arr = np.concatenate((immorphresult["deg"], immorphresult["pai"], immorphresult["fai"],
immorphresult["zH"], immorphresult["zHmax"], immorphresult["zH_sd"], zd, z0, immorphresult["test"]), axis=1)
np.savetxt(outputDir + '/' + pre + '_' + 'IMPGrid_anisotropic_' + str(f.attributes()[idx]) + '.txt', arr,
fmt=numformat, delimiter=' ', header=headerAniso, comments='')
del arr
zHall = immorphresult["zH_all"]
faiall = immorphresult["fai_all"]
paiall = immorphresult["pai_all"]
zMaxall = immorphresult["zHmax_all"]
zSdevall = immorphresult["zH_sd_all"]
zdall, z0all = rg.RoughnessCalc(Roughnessmethod, zHall, faiall, paiall, zMaxall, zSdevall)
# If zd and z0 are lower than open country, set to open country
if zdall == 0.0:
zdall = 0.1
if z0all == 0.0:
z0all = 0.03
# If pai is larger than 0 and fai is zero, set fai to 0.001. Issue # 164
if paiall > 0.:
if faiall == 0.:
faiall = 0.001
# adding wai area to isotrophic (wall area index)
total = 100. / (int(dsm_array.shape[0] * dsm_array.shape[1]))
numPixels = len(dsm_array[np.where(dsm_array != nd)])
buildDSM = np.copy(dsm_array) - np.copy(dem_array)
buildDSM[buildDSM == nd] = 0
buildDSM[(buildDSM < 2.)] = 0 # building should be higher than 2 meter
walls = wa.findwalls(buildDSM, 0.5, feedback, total) # 0.5 meter difference in kernel filter identify a wall
wallarea = np.sum(walls)
gridArea = numPixels * geotransform[1] * abs(geotransform[5]) # changed to work for irregular grids
wai = wallarea / gridArea
arr2 = np.array([[f.attributes()[idx], immorphresult["pai_all"], immorphresult["fai_all"], immorphresult["zH_all"],
immorphresult["zHmax_all"], immorphresult["zH_sd_all"], zdall, z0all, wai]])
arrmat = np.vstack([arrmat, arr2])
if calcSS:
#arrmatSS = np.empty((1, 5))
ssResults = ss.ss_calc(buildDSM, cdsm_array, walls, numPixels, feedback)
arrSS = np.hstack([ssResults["z"], ssResults["paiZ_b"], ssResults["bScale"], ssResults["paiZ_v"], ssResults["vScale"]])
np.savetxt(outputDir + '/' + pre + '_' + 'IMPGrid_SS_' + str(f.attributes()[idx]) + '.txt', arrSS,
fmt=numformatSS, delimiter=' ', header=headerSS, comments='')
dataset = None
dataset2 = None
arrmatsave = arrmat[1: arrmat.shape[0], :]
np.savetxt(outputDir + '/' + pre + '_' + 'IMPGrid_isotropic.txt', arrmatsave,
fmt=numformat2, delimiter=' ', header=headerIso, comments='')
if attrTable:
feedback.setProgressText("Adding result to layer attribute table")
self.addattr(vlayer, arrmatsave, headerIso, pre, feedback, idx)
return {self.OUTPUT_DIR: outputDir}
def addattr(self, vlayer, matdata, header, pre, feedback, idx):
current_index_length = len(vlayer.dataProvider().attributeIndexes())
caps = vlayer.dataProvider().capabilities()
if caps & QgsVectorDataProvider.AddAttributes:
line_split = header.split()
for x in range(1, len(line_split)):
vlayer.dataProvider().addAttributes([QgsField(pre + '_' + line_split[x], QVariant.Double)])
vlayer.commitChanges()
vlayer.updateFields()
attr_dict = {}
else:
raise QgsProcessingException("Vector Layer does not support adding attributes")
features = vlayer.getFeatures()
for f in features:
attr_dict.clear()
id = f.id()
wo = np.where(f.attributes()[idx] == matdata[:, 0])
if wo[0] >= 0:
for x in range(1, matdata.shape[1]):
attr_dict[current_index_length + x - 1] = float(matdata[wo[0], x])
vlayer.dataProvider().changeAttributeValues({id: attr_dict})
def name(self):
return 'Urban Morphology: Morphometric Calculator (Grid)'
def displayName(self):
return self.tr(self.name())
def group(self):
return self.tr(self.groupId())
def groupId(self):
return 'Pre-Processor'
def shortHelpString(self):
return self.tr('The Morphometric Calculator (Grid) plugin calculates various morphometric parameters based on digital surface models for '
'separate vector polygons. The polygons should preferable be squares or any other regular shape. To create such a grid, built in functions '
'in QGIS can be used (see Vector -> Research Tools -> Create Grid from the QGIS menu-bar). The morphometric parameters are used to describe the '
'roughness of a surface and are included in various local and mesoscale climate models (e.g. Grimmond and Oke 1999). They may vary depending '
'on what angle (wind direction) you are interested in. Thus, this plugin is able to derive the parameters for different directions. '
'Preferably, a ground and 3D-object DSM and DEM should be used as input data. The 3D objects are usually buildings but can also be 3D '
'vegetation (i.e. trees and bushes). It is also possible to derive the parameters from a 3D object DSM with no ground heights.\n'
'-------------\n'
'Grimmond CSB and Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38: 1262-1292'
'\n'
'Full manual available via the <b>Help</b>-button.')
def helpUrl(self):
url = "https://umep-docs.readthedocs.io/en/latest/pre-processor/Urban%20Morphology%20Morphometric%20Calculator%20(Grid).html"
return url
def tr(self, string):
return QCoreApplication.translate('Processing', string)
def icon(self):
cmd_folder = Path(os.path.split(inspect.getfile(inspect.currentframe()))[0]).parent
icon = QIcon(str(cmd_folder) + "/icons/ImageMorphIcon.png")
return icon
def createInstance(self):
return ProcessingImageMorphParmsAlgorithm()