-
Notifications
You must be signed in to change notification settings - Fork 80
/
dl_dann_ds_as_domain.yaml
35 lines (30 loc) · 1.29 KB
/
dl_dann_ds_as_domain.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
name: "dl_dann_ds_as_domain"
feature_definition:
use_norm_features: True
data_loader:
batch_size: 512
# Define how each data batch is sampled from multiple datasets and/or people
# option: "across_dataset", "within_dataset", "across_person", "within_person"
generate_by: "across_dataset"
mixup: null # option to mixup data: null, "across" (person or dataset), "within" (person or dataset)
mixup_alpha: null # the strongness of mixup. from 0 to 1
model_params:
arch: "1dCNN" # model architecture
# input dimension
# 2: a multi-channel time series data (for models like 1dCNN)
# 3: a single-channel image data (for models like 2dCNN)
input_dim: 2
conv_shapes: [8,8,8] # a list of convolutional layers shapes
embedding_size: 16 # vector length of the feature embedding network output
flag_y_vector: True # True: one hot vector on y for regular training
reverse_gradient_init_weights: 2 # weights of reverse gradient for domain adversarial training, which will decrease with the training
training_params:
optimizer: "Adam" # option: SGD or Adam
learning_rate: 0.001
epochs: 100
steps_per_epoch: 100 # number of batches per epoch
cos_annealing_step: 100
cos_annealing_decay: 0.95
best_epoch_strategy: "direct" # option: direct or on_test
verbose: 0
skip_training: False