forked from mikel-brostrom/boxmot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
232 lines (197 loc) · 10.6 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import sys
import torch
import logging
import subprocess
from subprocess import Popen
import argparse
import git
from git import Repo
import zipfile
from pathlib import Path
import shutil
import threading
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if str(ROOT / 'yolov5') not in sys.path:
sys.path.append(str(ROOT / 'yolov5')) # add yolov5 ROOT to PATH
if str(ROOT / 'strong_sort') not in sys.path:
sys.path.append(str(ROOT / 'strong_sort')) # add strong_sort ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from yolov5.utils.general import LOGGER, check_requirements, print_args, increment_path
from yolov5.utils.torch_utils import select_device
from track import run
def download_official_mot_eval_tool(val_tools_target_location):
# source: https://github.com/JonathonLuiten/TrackEval#official-evaluation-code
val_tools_url = "https://github.com/JonathonLuiten/TrackEval"
try:
Repo.clone_from(val_tools_url, val_tools_target_location)
LOGGER.info('Official MOT evaluation repo downloaded')
except git.exc.GitError as err:
LOGGER.info('Eval repo already downloaded')
def download_mot_dataset(val_tools_target_location, benchmark):
# download and unzip ground truth
url = 'https://omnomnom.vision.rwth-aachen.de/data/TrackEval/data.zip'
zip_dst = val_tools_target_location / 'data.zip'
# download and unzip if not already unzipped
if not zip_dst.with_suffix('').exists():
os.system(f"curl -# -L {url} -o {zip_dst} -# --retry 3 -C -")
LOGGER.info(f'data.zip downloaded sucessfully')
try:
with zipfile.ZipFile(val_tools_target_location / 'data.zip', 'r') as zip_file:
for member in tqdm(zip_file.namelist(), desc=f'Extracting MOT ground truth'):
# extract only if file has not already been extracted
if os.path.exists(val_tools_target_location / member) or os.path.isfile(val_tools_target_location / member):
pass
else:
zip_file.extract(member, val_tools_target_location)
LOGGER.info(f'data.zip unzipped sucessfully')
except Exception as e:
print('data.zip is corrupted. Try deleting the file and run the script again')
sys.exit()
# download and unzip the rest of MOTXX
url = 'https://motchallenge.net/data/' + benchmark + '.zip'
zip_dst = val_tools_target_location / (benchmark + '.zip')
if not (val_tools_target_location / 'data' / benchmark).exists():
os.system(f"curl -# -L {url} -o {zip_dst} -# --retry 3 -C -")
LOGGER.info(f'{benchmark}.zip downloaded sucessfully')
try:
with zipfile.ZipFile((val_tools_target_location / (benchmark + '.zip')), 'r') as zip_file:
if opt.benchmark == 'MOT16':
# extract only if file has not already been extracted
for member in tqdm(zip_file.namelist(), desc=f'Extracting {benchmark}'):
if os.path.exists(val_tools_target_location / 'data' / 'MOT16' / member) or os.path.isfile(val_tools_target_location / 'data' / 'MOT16' / member):
pass
else:
zip_file.extract(member, val_tools_target_location / 'data' / 'MOT16')
else:
for member in tqdm(zip_file.namelist(), desc=f'Extracting {benchmark}'):
if os.path.exists(val_tools_target_location / 'data' / member) or os.path.isfile(val_tools_target_location / 'data' / member):
pass
else:
zip_file.extract(member, val_tools_target_location / 'data')
LOGGER.info(f'{benchmark}.zip unzipped successfully')
except Exception as e:
print(f'{benchmark}.zip is corrupted. Try deleting the file and run the script again')
sys.exit()
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--yolo-weights', type=str, default=WEIGHTS / 'crowdhuman_yolov5m.pt', help='model.pt path(s)')
parser.add_argument('--reid-weights', type=str, default=WEIGHTS / 'osnet_x1_0_dukemtmcreid.pt')
parser.add_argument('--tracking-method', type=str, default='strongsort', help='strongsort, ocsort')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--benchmark', type=str, default='MOT17', help='MOT16, MOT17, MOT20')
parser.add_argument('--split', type=str, default='train', help='existing project/name ok, do not increment')
parser.add_argument('--eval-existing', type=str, default='', help='evaluate existing tracker results under mot_callenge/MOTXX-YY/...')
parser.add_argument('--conf-thres', type=float, default=0.45, help='confidence threshold')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[1280], help='inference size h,w')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--processes-per-device', type=int, default=2, help='how many subprocesses can be invoked per GPU (to manage memory consumption)')
opt = parser.parse_args()
device = []
for a in opt.device.split(','):
try:
a = int(a)
except ValueError:
pass
device.append(a)
opt.device = device
print_args(vars(opt))
return opt
def main(opt):
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
# download eval files
val_tools_target_location = ROOT / 'val_utils'
download_official_mot_eval_tool(val_tools_target_location)
if any(opt.benchmark == s for s in ['MOT16', 'MOT17', 'MOT20']):
download_mot_dataset(val_tools_target_location, opt.benchmark)
# set paths
mot_seqs_path = val_tools_target_location / 'data' / opt.benchmark / opt.split
if opt.benchmark == 'MOT17':
# each sequences is present 3 times, one for each detector
# (DPM, FRCNN, SDP). Keep only sequences from one of them
seq_paths = sorted([str(p / 'img1') for p in Path(mot_seqs_path).iterdir() if Path(p).is_dir()])
seq_paths = [Path(p) for p in seq_paths if 'FRCNN' in p]
with open(val_tools_target_location / "data/gt/mot_challenge/seqmaps/MOT17-train.txt", "r") as f: #
lines = f.readlines()
# overwrite MOT17 evaluation sequences to evaluate so that they are not duplicated
with open(val_tools_target_location / "data/gt/mot_challenge/seqmaps/MOT17-train.txt", "w") as f:
for line in seq_paths:
f.write(str(line.parent.stem) + '\n')
else:
# this is not the case for MOT16, MOT20 or your custom dataset
seq_paths = [p / 'img1' for p in Path(mot_seqs_path).iterdir() if Path(p).is_dir()]
save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
MOT_results_folder = val_tools_target_location / 'data' / 'trackers' / 'mot_challenge' / Path(str(opt.benchmark) + '-' + str(opt.split)) / save_dir.name / 'data'
(MOT_results_folder).mkdir(parents=True, exist_ok=True) # make
# extend devices to as many sequences are available
if any(isinstance(i,int) for i in opt.device) and len(opt.device) > 1:
devices = opt.device
for a in range(0, len(opt.device) % len(seq_paths)):
opt.device.extend(devices)
opt.device = opt.device[:len(seq_paths)]
if not opt.eval_existing:
processes = []
free_devices = opt.device * opt.processes_per_device
busy_devices = []
for i, seq_path in enumerate(seq_paths):
# spawn one subprocess per GPU in increasing order.
# When max devices are reached start at 0 again
if i > 0 and len(free_devices) == 0:
if len(processes) == 0:
raise IndexError("No active processes and no devices available.")
# Wait for oldest process to finish so we can get a free device
processes.pop(0).wait()
free_devices.append(busy_devices.pop(0))
tracking_subprocess_device = free_devices.pop(0)
busy_devices.append(tracking_subprocess_device)
dst_seq_path = seq_path.parent / seq_path.parent.name
if not dst_seq_path.is_dir():
src_seq_path = seq_path
shutil.move(str(src_seq_path), str(dst_seq_path))
p = subprocess.Popen([
sys.executable, "track.py",
"--yolo-weights", opt.yolo_weights,
"--reid-weights", opt.reid_weights,
"--tracking-method", opt.tracking_method,
"--conf-thres", str(opt.conf_thres),
"--imgsz", str(opt.imgsz[0]),
"--classes", str(0),
"--name", save_dir.name,
"--project", opt.project,
"--device", str(tracking_subprocess_device),
"--source", dst_seq_path,
"--exist-ok",
"--save-txt",
])
processes.append(p)
for p in processes:
p.wait()
print_args(vars(opt))
results = (save_dir.parent / opt.eval_existing / 'tracks' if opt.eval_existing else save_dir / 'tracks').glob('*.txt')
for src in results:
if opt.eval_existing:
dst = MOT_results_folder.parent.parent / opt.eval_existing / 'data' / Path(src.stem + '.txt')
else:
dst = MOT_results_folder / Path(src.stem + '.txt')
dst.parent.mkdir(parents=True, exist_ok=True) # make
shutil.copyfile(src, dst)
# run the evaluation on the generated txts
subprocess.run([
sys.executable, val_tools_target_location / "scripts/run_mot_challenge.py",
"--BENCHMARK", opt.benchmark,
"--TRACKERS_TO_EVAL", opt.eval_existing if opt.eval_existing else MOT_results_folder.parent.name,
"--SPLIT_TO_EVAL", "train",
"--METRICS", "HOTA", "CLEAR", "Identity",
"--USE_PARALLEL", "True",
"--NUM_PARALLEL_CORES", "4"
])
if __name__ == "__main__":
opt = parse_opt()
main(opt)