-
Notifications
You must be signed in to change notification settings - Fork 109
/
Automold.py
887 lines (793 loc) · 30.8 KB
/
Automold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
# import glob
import cv2 as cv2
import numpy as np
# import matplotlib.pyplot as plt
import random
import math
###################### HLS #############################
def hls(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_HLS=[]
image_list=image
for img in image_list:
eval('image_HLS.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2HLS))')
else:
image_HLS = eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2HLS)')
return image_HLS
def hue(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_Hue=[]
image_list=image
for img in image_list:
image_Hue.append(hls(img,src)[:,:,0])
else:
image_Hue= hls(image,src)[:,:,0]
return image_Hue
def lightness(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_lightness=[]
image_list=image
for img in image_list:
image_lightness.append(hls(img,src)[:,:,1])
else:
image_lightness= hls(image,src)[:,:,1]
return image_lightness
def saturation(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_saturation=[]
image_list=image
for img in image_list:
image_saturation.append(hls(img,src)[:,:,2])
else:
image_saturation= hls(image,src)[:,:,2]
return image_saturation
###################### HSV #############################
def hsv(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_HSV=[]
image_list=image
for img in image_list:
eval('image_HSV.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2HSV))')
else:
image_HSV = eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2HSV)')
return image_HSV
def value(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_value=[]
image_list=image
for img in image_list:
image_value.append(hsv(img,src)[:,:,2])
else:
image_value= hsv(image,src)[:,:,2]
return image_value
###################### BGR #############################
def bgr(image, src='RGB'):
verify_image(image)
if(is_list(image)):
image_BGR=[]
image_list=image
for img in image_list:
eval('image_BGR.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2BGR))')
else:
image_BGR= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2BGR)')
return image_BGR
###################### RGB #############################
def rgb(image, src='BGR'):
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
eval('image_RGB.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB))')
else:
image_RGB= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)')
return image_RGB
def red(image,src='BGR'):
verify_image(image)
if(is_list(image)):
image_red=[]
image_list=image
for img in image_list:
i= eval('cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB)')
image_red.append(i[:,:,0])
else:
image_red= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)[:,:,0]')
return image_red
def green(image,src='BGR'):
verify_image(image)
if(is_list(image)):
image_green=[]
image_list=image
for img in image_list:
i= eval('cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB)')
image_green.append(i[:,:,1])
else:
image_green= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)[:,:,1]')
return image_green
def blue(image,src='BGR'):
verify_image(image)
if(is_list(image)):
image_blue=[]
image_list=image
for img in image_list:
i=eval('cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB)')
image_blue.append(i[:,:,2])
else:
image_blue= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)[:,:,2]')
return image_blue
err_not_np_img= "not a numpy array or list of numpy array"
err_img_arr_empty="Image array is empty"
err_row_zero="No. of rows can't be <=0"
err_column_zero="No. of columns can't be <=0"
err_invalid_size="Not a valid size tuple (x,y)"
err_caption_array_count="Caption array length doesn't matches the image array length"
def is_numpy_array(x):
return isinstance(x, np.ndarray)
def is_tuple(x):
return type(x) is tuple
def is_list(x):
return type(x) is list
def is_numeric(x):
return type(x) is int
def is_numeric_list_or_tuple(x):
for i in x:
if not is_numeric(i):
return False
return True
err_brightness_coeff="brightness coeff can only be between 0.0 to 1.0"
err_darkness_coeff="darkness coeff can only be between 0.0 to 1.0"
def change_light(image, coeff):
image_HLS = cv2.cvtColor(image,cv2.COLOR_RGB2HLS) ## Conversion to HLS
image_HLS = np.array(image_HLS, dtype = np.float64)
image_HLS[:,:,1] = image_HLS[:,:,1]*coeff ## scale pixel values up or down for channel 1(Lightness)
if(coeff>1):
image_HLS[:,:,1][image_HLS[:,:,1]>255] = 255 ##Sets all values above 255 to 255
else:
image_HLS[:,:,1][image_HLS[:,:,1]<0]=0
image_HLS = np.array(image_HLS, dtype = np.uint8)
image_RGB = cv2.cvtColor(image_HLS,cv2.COLOR_HLS2RGB) ## Conversion to RGB
return image_RGB
def verify_image(image):
if is_numpy_array(image):
pass
elif(is_list(image)):
image_list=image
for img in image_list:
if not is_numpy_array(img):
raise Exception(err_not_np_img)
else:
raise Exception(err_not_np_img)
def brighten(image, brightness_coeff=-1): ##function to brighten the image
verify_image(image)
if(brightness_coeff!=-1):
if(brightness_coeff<0.0 or brightness_coeff>1.0):
raise Exception(err_brightness_coeff)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
if(brightness_coeff==-1):
brightness_coeff_t=1+ random.uniform(0,1) ## coeff between 1.0 and 1.5
else:
brightness_coeff_t=1+ brightness_coeff ## coeff between 1.0 and 2.0
image_RGB.append(change_light(img,brightness_coeff_t))
else:
if(brightness_coeff==-1):
brightness_coeff_t=1+ random.uniform(0,1) ## coeff between 1.0 and 1.5
else:
brightness_coeff_t=1+ brightness_coeff ## coeff between 1.0 and 2.0
image_RGB= change_light(image,brightness_coeff_t)
return image_RGB
def darken(image, darkness_coeff=-1): ##function to darken the image
verify_image(image)
if(darkness_coeff!=-1):
if(darkness_coeff<0.0 or darkness_coeff>1.0):
raise Exception(err_darkness_coeff)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
if(darkness_coeff==-1):
darkness_coeff_t=1- random.uniform(0,1)
else:
darkness_coeff_t=1- darkness_coeff
image_RGB.append(change_light(img,darkness_coeff_t))
else:
if(darkness_coeff==-1):
darkness_coeff_t=1- random.uniform(0,1)
else:
darkness_coeff_t=1- darkness_coeff
image_RGB= change_light(image,darkness_coeff_t)
return image_RGB
def random_brightness(image):
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
random_brightness_coefficient = 2* np.random.uniform(0,1) ## generates value between 0.0 and 2.0
image_RGB.append(change_light(img,random_brightness_coefficient))
else:
random_brightness_coefficient = 2* np.random.uniform(0,1) ## generates value between 0.0 and 2.0
image_RGB= change_light(image,random_brightness_coefficient)
return image_RGB
err_shadow_count="only 1-10 shadows can be introduced in an image"
err_invalid_rectangular_roi="Rectangular ROI dimensions are not valid"
err_shadow_dimension="polygons with dim<3 dont exist and >10 take time to plot"
def generate_shadow_coordinates(imshape, no_of_shadows, rectangular_roi, shadow_dimension):
vertices_list=[]
x1=rectangular_roi[0]
y1=rectangular_roi[1]
x2=rectangular_roi[2]
y2=rectangular_roi[3]
for index in range(no_of_shadows):
vertex=[]
for dimensions in range(shadow_dimension): ## Dimensionality of the shadow polygon
vertex.append((random.randint(x1, x2),random.randint(y1, y2)))
vertices = np.array([vertex], dtype=np.int32) ## single shadow vertices
vertices_list.append(vertices)
return vertices_list ## List of shadow vertices
def shadow_process(image,no_of_shadows,x1,y1,x2,y2, shadow_dimension):
image_HLS = cv2.cvtColor(image,cv2.COLOR_RGB2HLS) ## Conversion to HLS
mask = np.zeros_like(image)
imshape = image.shape
vertices_list= generate_shadow_coordinates(imshape, no_of_shadows,(x1,y1,x2,y2), shadow_dimension) #3 getting list of shadow vertices
for vertices in vertices_list:
cv2.fillPoly(mask, vertices, 255) ## adding all shadow polygons on empty mask, single 255 denotes only red channel
image_HLS[:,:,1][mask[:,:,0]==255] = image_HLS[:,:,1][mask[:,:,0]==255]*0.5 ## if red channel is hot, image's "Lightness" channel's brightness is lowered
image_RGB = cv2.cvtColor(image_HLS,cv2.COLOR_HLS2RGB) ## Conversion to RGB
return image_RGB
def add_shadow(image,no_of_shadows=1,rectangular_roi=(-1,-1,-1,-1), shadow_dimension=5):## ROI:(top-left x1,y1, bottom-right x2,y2), shadow_dimension=no. of sides of polygon generated
verify_image(image)
if not(is_numeric(no_of_shadows) and no_of_shadows>=1 and no_of_shadows<=10):
raise Exception(err_shadow_count)
if not(is_numeric(shadow_dimension) and shadow_dimension>=3 and shadow_dimension<=10):
raise Exception(err_shadow_dimension)
if is_tuple(rectangular_roi) and is_numeric_list_or_tuple(rectangular_roi) and len(rectangular_roi)==4:
x1=rectangular_roi[0]
y1=rectangular_roi[1]
x2=rectangular_roi[2]
y2=rectangular_roi[3]
else:
raise Exception(err_invalid_rectangular_roi)
if rectangular_roi==(-1,-1,-1,-1):
x1=0
if(is_numpy_array(image)):
y1=image.shape[0]//2
x2=image.shape[1]
y2=image.shape[0]
else:
y1=image[0].shape[0]//2
x2=image[0].shape[1]
y2=image[0].shape[0]
elif x1==-1 or y1==-1 or x2==-1 or y2==-1 or x2<=x1 or y2<=y1:
raise Exception(err_invalid_rectangular_roi)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
output=shadow_process(img,no_of_shadows,x1,y1,x2,y2, shadow_dimension)
image_RGB.append(output)
else:
output=shadow_process(image,no_of_shadows,x1,y1,x2,y2, shadow_dimension)
image_RGB = output
return image_RGB
err_snow_coeff="Snow coeff can only be between 0 and 1"
def snow_process(image,snow_coeff):
image_HLS = cv2.cvtColor(image,cv2.COLOR_RGB2HLS) ## Conversion to HLS
image_HLS = np.array(image_HLS, dtype = np.float64)
brightness_coefficient = 2.5
imshape = image.shape
snow_point=snow_coeff ## increase this for more snow
image_HLS[:,:,1][image_HLS[:,:,1]<snow_point] = image_HLS[:,:,1][image_HLS[:,:,1]<snow_point]*brightness_coefficient ## scale pixel values up for channel 1(Lightness)
image_HLS[:,:,1][image_HLS[:,:,1]>255] = 255 ##Sets all values above 255 to 255
image_HLS = np.array(image_HLS, dtype = np.uint8)
image_RGB = cv2.cvtColor(image_HLS,cv2.COLOR_HLS2RGB) ## Conversion to RGB
return image_RGB
def add_snow(image, snow_coeff=-1):
verify_image(image)
if(snow_coeff!=-1):
if(snow_coeff<0.0 or snow_coeff>1.0):
raise Exception(err_snow_coeff)
else:
snow_coeff=random.uniform(0,1)
snow_coeff*=255/2
snow_coeff+=255/3
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
output= snow_process(img,snow_coeff)
image_RGB.append(output)
else:
output= snow_process(image,snow_coeff)
image_RGB=output
return image_RGB
err_rain_slant="Numeric value between -20 and 20 is allowed"
err_rain_width="Width value between 1 and 5 is allowed"
err_rain_length="Length value between 0 and 100 is allowed"
def generate_random_lines(imshape,slant,drop_length,rain_type):
drops=[]
area=imshape[0]*imshape[1]
no_of_drops=area//600
if rain_type.lower()=='drizzle':
no_of_drops=area//770
drop_length=10
elif rain_type.lower()=='heavy':
drop_length=30
elif rain_type.lower()=='torrential':
no_of_drops=area//500
drop_length=60
for i in range(no_of_drops): ## If You want heavy rain, try increasing this
if slant<0:
x= np.random.randint(slant,imshape[1])
else:
x= np.random.randint(0,imshape[1]-slant)
y= np.random.randint(0,imshape[0]-drop_length)
drops.append((x,y))
return drops,drop_length
def rain_process(image,slant,drop_length,drop_color,drop_width,rain_drops):
imshape = image.shape
image_t= image.copy()
for rain_drop in rain_drops:
cv2.line(image_t,(rain_drop[0],rain_drop[1]),(rain_drop[0]+slant,rain_drop[1]+drop_length),drop_color,drop_width)
image= cv2.blur(image_t,(7,7)) ## rainy view are blurry
brightness_coefficient = 0.7 ## rainy days are usually shady
image_HLS = hls(image) ## Conversion to HLS
image_HLS[:,:,1] = image_HLS[:,:,1]*brightness_coefficient ## scale pixel values down for channel 1(Lightness)
image_RGB= rgb(image_HLS,'hls') ## Conversion to RGB
return image_RGB
##rain_type='drizzle','heavy','torrential'
def add_rain(image,slant=-1,drop_length=20,drop_width=1,drop_color=(200,200,200),rain_type='None'): ## (200,200,200) a shade of gray
verify_image(image)
slant_extreme=slant
if not(is_numeric(slant_extreme) and (slant_extreme>=-20 and slant_extreme<=20)or slant_extreme==-1):
raise Exception(err_rain_slant)
if not(is_numeric(drop_width) and drop_width>=1 and drop_width<=5):
raise Exception(err_rain_width)
if not(is_numeric(drop_length) and drop_length>=0 and drop_length<=100):
raise Exception(err_rain_length)
if(is_list(image)):
image_RGB=[]
image_list=image
imshape = image[0].shape
if slant_extreme==-1:
slant= np.random.randint(-10,10) ##generate random slant if no slant value is given
rain_drops,drop_length= generate_random_lines(imshape,slant,drop_length,rain_type)
for img in image_list:
output= rain_process(img,slant_extreme,drop_length,drop_color,drop_width,rain_drops)
image_RGB.append(output)
else:
imshape = image.shape
if slant_extreme==-1:
slant= np.random.randint(-10,10) ##generate random slant if no slant value is given
rain_drops,drop_length= generate_random_lines(imshape,slant,drop_length,rain_type)
output= rain_process(image,slant_extreme,drop_length,drop_color,drop_width,rain_drops)
image_RGB=output
return image_RGB
err_fog_coeff="Fog coeff can only be between 0 and 1"
def add_blur(image, x,y,hw,fog_coeff):
overlay= image.copy()
output= image.copy()
alpha= 0.08*fog_coeff
rad= hw//2
point=(x+hw//2, y+hw//2)
cv2.circle(overlay,point, int(rad), (255,255,255), -1)
cv2.addWeighted(overlay, alpha, output, 1 -alpha ,0, output)
return output
def generate_random_blur_coordinates(imshape,hw):
blur_points=[]
midx= imshape[1]//2-2*hw
midy= imshape[0]//2-hw
index=1
while(midx>-hw or midy>-hw):
for i in range(hw//10*index):
x= np.random.randint(midx,imshape[1]-midx-hw)
y= np.random.randint(midy,imshape[0]-midy-hw)
blur_points.append((x,y))
midx-=3*hw*imshape[1]//sum(imshape)
midy-=3*hw*imshape[0]//sum(imshape)
index+=1
return blur_points
def add_fog(image, fog_coeff=-1):
verify_image(image)
if(fog_coeff!=-1):
if(fog_coeff<0.0 or fog_coeff>1.0):
raise Exception(err_fog_coeff)
if(is_list(image)):
image_RGB=[]
image_list=image
imshape = image[0].shape
for img in image_list:
if fog_coeff==-1:
fog_coeff_t=random.uniform(0.3,1)
else:
fog_coeff_t=fog_coeff
hw=int(imshape[1]//3*fog_coeff_t)
haze_list= generate_random_blur_coordinates(imshape,hw)
for haze_points in haze_list:
img= add_blur(img, haze_points[0],haze_points[1], hw,fog_coeff_t) ## adding all shadow polygons on empty mask, single 255 denotes only red channel
img = cv2.blur(img ,(hw//10,hw//10))
image_RGB.append(img)
else:
imshape = image.shape
if fog_coeff==-1:
fog_coeff_t=random.uniform(0.3,1)
else:
fog_coeff_t=fog_coeff
hw=int(imshape[1]//3*fog_coeff_t)
haze_list= generate_random_blur_coordinates(imshape,hw)
for haze_points in haze_list:
image= add_blur(image, haze_points[0],haze_points[1], hw,fog_coeff_t)
image = cv2.blur(image ,(hw//10,hw//10))
image_RGB = image
return image_RGB
def generate_gravel_patch(rectangular_roi):
x1=rectangular_roi[0]
y1=rectangular_roi[1]
x2=rectangular_roi[2]
y2=rectangular_roi[3]
gravels=[]
area= abs((x2-x1)*(y2-y1))
for i in range((int)(area//10)):
x= np.random.randint(x1,x2)
y= np.random.randint(y1,y2)
gravels.append((x,y))
return gravels
def gravel_process(image,x1,x2,y1,y2,no_of_patches):
x=image.shape[1]
y=image.shape[0]
rectangular_roi_default=[]
for i in range(no_of_patches):
xx1=random.randint(x1, x2)
xx2=random.randint(x1, xx1)
yy1=random.randint(y1, y2)
yy2=random.randint(y1, yy1)
rectangular_roi_default.append((xx2,yy2,min(xx1,xx2+200),min(yy1,yy2+30)))
img_hls=hls(image)
for roi in rectangular_roi_default:
gravels= generate_gravel_patch(roi)
for gravel in gravels:
x=gravel[0]
y=gravel[1]
r=random.randint(1, 4)
r1=random.randint(0, 255)
img_hls[max(y-r,0):min(y+r,y),max(x-r,0):min(x+r,x),1]=r1
image_RGB= rgb(img_hls,'hls')
return image_RGB
def add_gravel(image,rectangular_roi=(-1,-1,-1,-1), no_of_patches=8):
verify_image(image)
if is_tuple(rectangular_roi) and is_numeric_list_or_tuple(rectangular_roi) and len(rectangular_roi)==4:
x1=rectangular_roi[0]
y1=rectangular_roi[1]
x2=rectangular_roi[2]
y2=rectangular_roi[3]
else:
raise Exception(err_invalid_rectangular_roi)
if rectangular_roi==(-1,-1,-1,-1):
if(is_numpy_array(image)):
x1=0
y1=int(image.shape[0]*3/4)
x2=image.shape[1]
y2=image.shape[0]
else:
x1=0
y1=int(image[0].shape[0]*3/4)
x2=image[0].shape[1]
y2=image[0].shape[0]
elif x1==-1 or y1==-1 or x2==-1 or y2==-1 or x2<=x1 or y2<=y1:
raise Exception(err_invalid_rectangular_roi)
color=[0,255]
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
output= gravel_process(img,x1,x2,y1,y2,no_of_patches)
image_RGB.append(output)
else:
output= gravel_process(image,x1,x2,y1,y2,no_of_patches)
image_RGB= output
return image_RGB
err_flare_circle_count="Numeric value between 0 and 20 is allowed"
def flare_source(image, point,radius,src_color):
overlay= image.copy()
output= image.copy()
num_times=radius//10
alpha= np.linspace(0.0,1,num= num_times)
rad= np.linspace(1,radius, num=num_times)
for i in range(num_times):
cv2.circle(overlay,point, int(rad[i]), src_color, -1)
alp=alpha[num_times-i-1]*alpha[num_times-i-1]*alpha[num_times-i-1]
cv2.addWeighted(overlay, alp, output, 1 -alp ,0, output)
return output
def add_sun_flare_line(flare_center,angle,imshape):
x=[]
y=[]
i=0
for rand_x in range(0,imshape[1],10):
rand_y= math.tan(angle)*(rand_x-flare_center[0])+flare_center[1]
x.append(rand_x)
y.append(2*flare_center[1]-rand_y)
return x,y
def add_sun_process(image, no_of_flare_circles,flare_center,src_radius,x,y,src_color):
overlay= image.copy()
output= image.copy()
imshape=image.shape
for i in range(no_of_flare_circles):
alpha=random.uniform(0.05,0.2)
r=random.randint(0, len(x)-1)
rad=random.randint(1, imshape[0]//100-2)
cv2.circle(overlay,(int(x[r]),int(y[r])), rad*rad*rad, (random.randint(max(src_color[0]-50,0), src_color[0]),random.randint(max(src_color[1]-50,0), src_color[1]),random.randint(max(src_color[2]-50,0), src_color[2])), -1)
cv2.addWeighted(overlay, alpha, output, 1 - alpha,0, output)
output= flare_source(output,(int(flare_center[0]),int(flare_center[1])),src_radius,src_color)
return output
def add_sun_flare(image,flare_center=-1, angle=-1, no_of_flare_circles=8,src_radius=400, src_color=(255,255,255)):
verify_image(image)
if(angle!=-1):
angle=angle%(2*math.pi)
if not(no_of_flare_circles>=0 and no_of_flare_circles<=20):
raise Exception(err_flare_circle_count)
if(is_list(image)):
image_RGB=[]
image_list=image
imshape=image_list[0].shape
for img in image_list:
if(angle==-1):
angle_t=random.uniform(0,2*math.pi)
if angle_t==math.pi/2:
angle_t=0
else:
angle_t=angle
if flare_center==-1:
flare_center_t=(random.randint(0,imshape[1]),random.randint(0,imshape[0]//2))
else:
flare_center_t=flare_center
x,y= add_sun_flare_line(flare_center_t,angle_t,imshape)
output= add_sun_process(img, no_of_flare_circles,flare_center_t,src_radius,x,y,src_color)
image_RGB.append(output)
else:
imshape=image.shape
if(angle==-1):
angle_t=random.uniform(0,2*math.pi)
if angle_t==math.pi/2:
angle_t=0
else:
angle_t=angle
if flare_center==-1:
flare_center_t=(random.randint(0,imshape[1]),random.randint(0,imshape[0]//2))
else:
flare_center_t=flare_center
x,y= add_sun_flare_line(flare_center_t,angle_t,imshape)
output= add_sun_process(image, no_of_flare_circles,flare_center_t,src_radius,x,y,src_color)
image_RGB = output
return image_RGB
err_speed_coeff="Speed coeff can only be between 0 and 1"
def apply_motion_blur(image,count):
image_t=image.copy()
imshape=image_t.shape
size=15
kernel_motion_blur = np.zeros((size, size))
kernel_motion_blur[int((size-1)/2), :] = np.ones(size)
kernel_motion_blur = kernel_motion_blur / size
i= imshape[1]*3//4 - 10*count
while(i<=imshape[1]):
image_t[:,i:,:] = cv2.filter2D(image_t[:,i:,:], -1, kernel_motion_blur)
image_t[:,:imshape[1]-i,:] = cv2.filter2D(image_t[:,:imshape[1]-i,:], -1, kernel_motion_blur)
i+=imshape[1]//25-count
count+=1
image_RGB=image_t
return image_RGB
def add_speed(image, speed_coeff=-1):
verify_image(image)
if(speed_coeff !=-1):
if(speed_coeff<0.0 or speed_coeff>1.0):
raise Exception(err_speed_coeff)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
if(speed_coeff==-1):
count_t=int(15*random.uniform(0,1))
else:
count_t=int(15*speed_coeff)
img=apply_motion_blur(img,count_t)
image_RGB.append(img)
else:
if(speed_coeff==-1):
count_t=int(15*random.uniform(0,1))
else:
count_t=int(15*speed_coeff)
image_RGB= apply_motion_blur(image,count_t)
return image_RGB
# In[159]:
def autumn_process(image):
image_t=image.copy()
imshape=image_t.shape
image_hls= hls(image_t)
step=8
aut_colors=[1,5,9,11]
col= aut_colors[random.randint(0,3)]
for i in range(0,imshape[1],step):
for j in range(0,imshape[0],step):
avg=np.average(image_hls[j:j+step,i:i+step,0])
# print(avg)
if(avg >20 and avg< 100 and np.average(image[j:j+step,i:i+step,1])<100):
image_hls[j:j+step,i:i+step,0]= col
image_hls[j:j+step,i:i+step,2]=255
return rgb(image_hls,'hls')
def add_autumn(image):
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
img=autumn_process(img)
image_RGB.append(img)
else:
image=autumn_process(image)
image_RGB= image
return image_RGB
def fliph(image): ##function to flip the image on horizontal axis
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
image_RGB.append(cv2.flip(img,0))
else:
image_RGB= cv2.flip(image,0)
return image_RGB
def flipv(image): ##function to flip the image on vertical axis
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
image_RGB.append(cv2.flip(img,1))
else:
image_RGB= cv2.flip(image,1)
return image_RGB
def random_flip(image): ##function to flip the image on horizontal axis
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
p= random.uniform(0,1)
if(p>0.5):
image_RGB.append(cv2.flip(img,0))
else:
image_RGB.append(cv2.flip(img,1))
else:
p= random.uniform(0,1)
if(p>0.5):
image_RGB=cv2.flip(image,0)
else:
image_RGB=cv2.flip(image,1)
return image_RGB
# def edges(image,threshold1=100, threshold2=150): ##function to flip the image on horizontal axis
# verify_image(image)
# if(is_list(image)):
# image_RGB=[]
# image_list=image
# for img in image_list:
# image_RGB.append(cv2.Canny(img,threshold1,threshold2))
# else:
# image_RGB=cv2.Canny(img,threshold1,threshold2)
# return image_RGB
def manhole_process(image,center,height,width,src_color=(0,0,0)):
overlay= image.copy()
output= image.copy()
# cv2.ellipse(overlay, center =center,box=None,color =src_color)
cv2.ellipse(overlay, center, (width,height), 0, 0, 360, src_color, -1)
# cv2.circle(overlay, center, radius, src_color, -1)
alp=1
cv2.addWeighted(overlay, alp, output, 1 -alp ,0, output)
return output
err_invalid_center_manhole="center should be in the format (x,y)"
err_invalid_height_width_manhole="height and width should be positive integers."
def add_manhole(image,center=-1,color=(120,120,120),height=1,width=1, type='closed'): ##function to flip the image on horizontal axis
verify_image(image)
if(center!=-1):
if not(is_tuple(center) and is_numeric_list_or_tuple(center) and len(center)==2):
raise Exception(err_invalid_center_manhole)
if not (is_numeric(height) and is_numeric(width) and height>0 and width>0):
raise Exception(err_invalid_height_width_manhole)
if color==(120,120,120):
if type=='closed':
color=(67,70,75)
elif type=='open':
color=(0,0,0)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
height_t=height
width_t=width
center_t=center
if height==1:
height_t=img.shape[0]//25
if width==1:
width_t=int(img.shape[0]*3//25)
if center==-1:
center_t= (img.shape[0]-100, img.shape[1]//2)
image_RGB.append(manhole_process(img,center_t,height_t,width_t,color))
else:
height_t=height
width_t=width
center_t=center
if height==1:
height_t=image.shape[0]//25
if width==1:
width_t=int(image.shape[0]*3//25)
if center==-1:
center= (image.shape[0]-100, image.shape[1]//2)
image_RGB= manhole_process(image,center_t,height_t,width_t,color)
return image_RGB
def exposure_process(image):
image= np.copy(image)
img_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(4,4))
ones= np.ones(img_yuv[:,:,0].shape)
ones[img_yuv[:,:,0]>150]= 0.85
img_yuv[:,:,0]= img_yuv[:,:,0]*ones
img_yuv[:,:,0] = clahe.apply(img_yuv[:,:,0])
img_yuv[:,:,0] = cv2.equalizeHist(img_yuv[:,:,0])
img_yuv[:,:,0] = clahe.apply(img_yuv[:,:,0])
image_res = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
image_res= cv2.fastNlMeansDenoisingColored(image_res,None,3,3,7,21)
return image_res
def correct_exposure(image):
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
image_RGB.append(exposure_process(img))
else:
image_RGB= exposure_process(image)
return image_RGB
err_aug_type='wrong augmentation function is defined'
err_aug_list_type='aug_types should be a list of string function names'
err_aug_volume='volume type can only be "same" or "expand"'
def augment_random(image, aug_types="", volume='expand' ):
aug_types_all=["random_brightness","add_shadow","add_snow","add_rain","add_fog","add_gravel","add_sun_flare","add_speed","add_autumn","random_flip","add_manhole"]
if aug_types=="":
aug_types=aug_types_all
output=[]
if not(is_list(aug_types)):
raise Exception(err_aug_list_type)
if volume=='expand':
for aug_type in aug_types:
if not(aug_type in aug_types_all):
raise Exception(err_aug_type)
command=aug_type+'(image)'
result=eval(command)
if(is_list(result)):
output+=result
else:
output.append(result)
elif volume=='same':
verify_image(image)
for aug_type in aug_types:
if not(aug_type in aug_types_all):
raise Exception(err_aug_type)
if(is_list(image)):
image_list=image
for img in image_list:
selected_aug=aug_types[random.randint(0,len(aug_types)-1)]
command=selected_aug+'(img)'
output.append(eval(command))
else:
selected_aug=aug_types[random.randint(0,len(aug_types)-1)]
command=selected_aug+'(image)'
output=eval(command)
else:
raise Exception(err_aug_volume)
return output