-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlibfm_model.py
189 lines (174 loc) · 5.1 KB
/
libfm_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python
# coding=utf-8
'''
> File Name: libfm_model.py
> Author: ZS
> Mail: [email protected]
> Created Time: 2017年05月09日 星期二 22时17分11秒
'''
import os
import math
'''
inference of the fm learning by sgd or als
'''
class FMModel(object):
# parameters
_w0 = 0
_wi = []
_wjf = []
# parameter configurations
_k0 = 0
_k1 = 0
_f_num = 0
_k = 0
# external parameters
_max_fid = 0
_filename = "./fm.model"
def __init__(self, max_fid=0, filename=None):
"""
__init__
"""
if (filename is not None):
self._filename = filename
self._max_fid = max_fid
return
def __del__(self):
"""
__del__
"""
return
def load_model(self, filename=None):
"""
load_model
"""
w0, wi, wjf, ret = self._load_model(filename)
if (0 != ret):
return ret
self._w0 = w0
self._wi = wi
self._wjf = wjf
return ret
def reload_model(self, filename=None):
"""
reload_model
"""
w0, wi, wjf, ret = self._load_model(filename)
if (0 != ret):
return ret
self._w0 = w0
self._wi = wi
self._wjf = wjf
return ret
def _load_model(self, filename=None):
"""
_load_model
"""
w0 = 0
wi = []
wjf = []
if (filename is None) or (self._filename is None):
return w0, wi, wjf, -1
if (filename is None):
filename = self._filename
if not os.path.exists(filename):
return w0, wi, wjf, -2
fp_model = open(filename)
line = fp_model.readline()
if not line:
return w0, wi, wjf, -3
k0, k1, f_num, k = line.strip().split("\t")
#line = fp_model.readline()
while line:
if ("1" == k0):
line = fp_model.readline()
if (-1 == line.strip().find("#global bias W0")):
return w0, wi, wjf, -4
line = fp_model.readline()
w0 = float(line.strip())
if ("1" == k1):
line = fp_model.readline()
if (-1 == line.strip().find("#unary interactions Wj")):
return w0, wi, wjf, -5
for i in range(int(f_num)):
line = fp_model.readline()
wi.append(float(line.strip()))
line = fp_model.readline()
if (-1 == line.strip().find("#pairwise interactions Vj,f")):
return w0, wi, wjf, -6
for j in range(int(f_num)):
line = fp_model.readline()
tmp = [0.0 for f in range(int(k))]
line_arr = line.strip().split()
l = min(int(k), len(line_arr))
for f in range(int(l)):
tmp[f] = float(line_arr[f])
wjf.append(tmp)
break
self._k0 = int(k0)
self._k1 = int(k1)
self._f_num = int(f_num)
self._k = int(k)
if (0 == self._max_fid):
self._max_fid = int(f_num) + 1
return w0, wi, wjf, 0
def predict(self, _feature_dict):
"""
predict
"""
result = 0.0
result += self._w0
for (key, value) in _feature_dict.items():
result += self._wi[int(key)] * float(value)
_sum = [0.0 for f in range(self._k)]
_sum_sqr = [0.0 for f in range(self._k)]
for (key, value) in _feature_dict.items():
j = int(key)
for f in range(self._k):
_d = self._wjf[j][f] * float(value)
_sum[f] += _d
_sum_sqr[f] += _d * _d
for f in range(self._k):
result += 0.5 * ((_sum[f] * _sum[f]) - _sum_sqr[f])
return result
def predict_prob(self, _feature_dict):
"""
predict_prob
"""
result = self.predict(_feature_dict)
if (result > 36):
return 1.0
if (result < -36):
return 0.0
return 1.0 / (1.0 + math.exp(-result))
def main(model_file, test_file):
"""
main test
"""
fm = FMModel(13, model_file)
fm.load_model(model_file)
fp = open(test_file)
correct_num = 0
total_num = 0
for line in fp.readlines():
line_arr = line.strip().split()
label = line_arr[0].strip()
if ("+1" == label):
label = 1
else:
label = -1
feat_dict = dict()
for i in range(1, len(line_arr)):
id, val = line_arr[i].strip().split(":")
feat_dict[int(id)] = float(val)
#print feat_dict
score = fm.predict(feat_dict)
print label, score
total_num += 1
if (label > 0) and (score > 0.0):
correct_num += 1
if (label < 0) and (score < 0.0):
correct_num += 1
print correct_num, total_num, float(correct_num) / total_num
if __name__ == "__main__":
print "This is libfm_model"
main("fm.model", "heart_scale")