forked from kennymckormick/pyskl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_gesture.py
173 lines (143 loc) · 5.74 KB
/
demo_gesture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import cv2
import mediapipe as mp
import numpy as np
import torch
from pyskl.apis import init_recognizer
from pyskl.datasets import GestureDataset
from pyskl.datasets.pipelines import Compose
from pyskl.smp import h2r
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
def landmark2nparray(landmark):
ret = np.array([[lm.x, lm.y] for lm in landmark.landmark])
assert ret.shape == (21, 2)
return ret
def kp2box(kpt, margin=0.2):
min_x, max_x = min(kpt[:, 0]), max(kpt[:, 0])
min_y, max_y = min(kpt[:, 1]), max(kpt[:, 1])
c_x, c_y = (min_x + max_x) / 2, (min_y + max_y) / 2
w, h = max_x - min_x, max_y - min_y
w2, h2 = w * (1 + margin) / 2, h * (1 + margin) / 2
min_x = max(0, c_x - w2)
min_y = max(0, c_y - h2)
max_x = min(1, c_x + w2)
max_y = min(1, c_y + h2)
return (min_x, min_y, max_x - min_x, max_y - min_y)
def flip_box(box):
return (1 - box[0] - box[2], box[1], box[2], box[3])
def create_fake_anno(history, keypoint, bbox, clip_len=10):
from mmdet.core import BboxOverlaps2D
bbox = torch.tensor(bbox)[None]
iou_calc = BboxOverlaps2D()
results = [keypoint]
# frame contains tuples of (keypoint, bbox)
for frame in history[::-1]:
anchors = torch.tensor([x[1] for x in frame])
if anchors.shape[0] == 0:
break
ious = iou_calc(bbox, anchors)[0]
idx = torch.argmax(ious)
if ious[idx] >= 0.5:
results.append(frame[idx][0])
bbox = anchors[idx: idx + 1]
else:
break
if len(results) >= clip_len:
break
keypoint = np.array(results[::-1], dtype=np.float32)[None]
total_frames = keypoint.shape[1]
return dict(
keypoint=keypoint,
total_frames=total_frames,
frame_dir='NA',
label=0,
start_index=0,
modality='Pose',
test_mode=True)
def create_fake_anno_empty(clip_len=10):
return dict(
keypoint=np.zeros([1, 10, 21, 2], dtype=np.float32),
total_frames=10,
frame_dir='NA',
label=0,
start_index=0,
modality='Pose',
test_mode=True)
# For webcam input:
cap = cv2.VideoCapture(0)
with mp_hands.Hands(static_image_mode=True, model_complexity=1, min_detection_confidence=0.5, max_num_hands=1) as hands:
recognizer = init_recognizer('demo/stgcnpp_gesture.py', 'demo/hagrid.pth', device='cpu')
recognizer.eval()
cfg = recognizer.cfg
device = next(recognizer.parameters()).device
test_pipeline = Compose(cfg.test_pipeline)
fake_anno = create_fake_anno_empty()
sample = test_pipeline(fake_anno)['keypoint'][None].to(device)
prediction = recognizer(sample, return_loss=False)[0]
keypoints_buffer = []
results_buffer = []
frame_idx = 0
predict_per_nframe = 2
plate = '03045E-023E8A-0077B6-0096C7-00B4D8-48CAE4-90E0EF'.split('-')
plate = [h2r(x)[::-1] for x in plate]
while cap.isOpened():
success, image = cap.read()
frame_idx += 1
if not success:
print('Ignoring empty camera frame.')
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
boxes = []
keypoints = []
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
hand = landmark2nparray(hand_landmarks)
box = kp2box(hand)
boxes.append(box)
keypoints.append((hand, box))
# hand_kpts.append(landmark2nparray(hand_landmarks))
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
h, w, _ = image.shape
image = cv2.flip(image, 1)
for box in boxes:
box = flip_box(box)
x, y, w, h = [int(v * s) for v, s in zip(box, (w, h, w, h))]
cv2.rectangle(image, (x, y), (x + w, y + h), color=(0, 0, 255), thickness=w // 120)
# frames.append(hand_kpts)
# Flip the image horizontally for a selfie-view display.
if frame_idx % predict_per_nframe == 0:
if len(keypoints) == 0:
results_buffer.append('No hands detected')
else:
for keypoint, bbox in keypoints:
with torch.no_grad():
sample = create_fake_anno(keypoints_buffer, keypoint, bbox)
sample = test_pipeline(sample)['keypoint'][None].to(device)
prediction = recognizer(sample, return_loss=False)[0]
action = np.argmax(prediction)
action_name = GestureDataset.label_names[action]
results_buffer.append(f'{action_name}: {prediction[action]:.3f}')
FONTFACE = cv2.FONT_HERSHEY_DUPLEX
FONTSCALE = 0.6
THICKNESS = 1
LINETYPE = 1
for i, (action_label, color) in enumerate(zip(results_buffer[::-1][:7], plate)):
cv2.putText(image, action_label, (10, 24 + i * 24), FONTFACE, FONTSCALE, color, THICKNESS, LINETYPE)
keypoints_buffer.append(keypoints)
cv2.imshow('PYSKL Gesture Demo [Press ESC to Exit]', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()