This directory includes configs for training ST-GCN++ with strong spatial augmentations and 120 epochs. The augmentations we adopted include Random Rotating and Random Scaling.
@misc{duan2022pyskl,
title={PYSKL: a toolbox for skeleton-based video understanding},
author={PYSKL Contributors},
howpublished = {\url{https://github.com/kennymckormick/pyskl}},
year={2022}
}
We release numerous checkpoints trained with various modalities, annotations on NTURGB+D and NTURGB+D 120. The accuracy of each modality links to the weight file.
Dataset | Annotation | GPUs | Joint Top1 | Bone Top1 | Joint Motion Top1 | Bone-Motion Top1 | Two-Stream Top1 | Four Stream Top1 |
---|---|---|---|---|---|---|---|---|
NTURGB+D XSub | Official 3D Skeleton | 8 | joint_config: 90.3 | bone_config: 90.8 | joint_motion_config: 88.3 | bone_motion_config: 87.8 | 92.2 | 92.6 |
NTURGB+D XView | Official 3D Skeleton | 8 | joint_config: 96.6 | bone_config: 95.9 | joint_motion_config: 95.1 | bone_motion_config: 93.7 | 97.1 | 97.4 |
NTURGB+D 120 XSub | Official 3D Skeleton | 8 | joint_config: 84.3 | bone_config: 87.0 | joint_motion_config: 82.2 | bone_motion_config: 81.9 | 88.2 | 88.6 |
NTURGB+D 120 XSet | Official 3D Skeleton | 8 | joint_config: 86.7 | bone_config: 88.3 | joint_motion_config: 85.1 | bone_motion_config: 84.4 | 90.1 | 90.8 |
Note
- We use the linear-scaling learning rate (Initial LR ∝ Batch Size). If you change the training batch size, remember to change the initial LR proportionally.
- For Two-Stream results, we adopt the 1 (Joint):1 (Bone) fusion. For Four-Stream results, we adopt the 2 (Joint):2 (Bone):1 (Joint Motion):1 (Bone Motion) fusion.
Please refer to the README of ST-GCN++.