Skip to content

Latest commit

 

History

History
 
 

strong_aug

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Strong Augmentations

Introduction

This directory includes configs for training ST-GCN++ with strong spatial augmentations and 120 epochs. The augmentations we adopted include Random Rotating and Random Scaling.

Citation

@misc{duan2022pyskl,
    title={PYSKL: a toolbox for skeleton-based video understanding},
    author={PYSKL Contributors},
    howpublished = {\url{https://github.com/kennymckormick/pyskl}},
    year={2022}
}

Model Zoo

We release numerous checkpoints trained with various modalities, annotations on NTURGB+D and NTURGB+D 120. The accuracy of each modality links to the weight file.

Dataset Annotation GPUs Joint Top1 Bone Top1 Joint Motion Top1 Bone-Motion Top1 Two-Stream Top1 Four Stream Top1
NTURGB+D XSub Official 3D Skeleton 8 joint_config: 90.3 bone_config: 90.8 joint_motion_config: 88.3 bone_motion_config: 87.8 92.2 92.6
NTURGB+D XView Official 3D Skeleton 8 joint_config: 96.6 bone_config: 95.9 joint_motion_config: 95.1 bone_motion_config: 93.7 97.1 97.4
NTURGB+D 120 XSub Official 3D Skeleton 8 joint_config: 84.3 bone_config: 87.0 joint_motion_config: 82.2 bone_motion_config: 81.9 88.2 88.6
NTURGB+D 120 XSet Official 3D Skeleton 8 joint_config: 86.7 bone_config: 88.3 joint_motion_config: 85.1 bone_motion_config: 84.4 90.1 90.8

Note

  1. We use the linear-scaling learning rate (Initial LR ∝ Batch Size). If you change the training batch size, remember to change the initial LR proportionally.
  2. For Two-Stream results, we adopt the 1 (Joint):1 (Bone) fusion. For Four-Stream results, we adopt the 2 (Joint):2 (Bone):1 (Joint Motion):1 (Bone Motion) fusion.

Training & Testing

Please refer to the README of ST-GCN++.