forked from ha7ilm/csdr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
libcsdr.c
executable file
·2541 lines (2296 loc) · 107 KB
/
libcsdr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
This software is part of libcsdr, a set of simple DSP routines for
Software Defined Radio.
Copyright (c) 2014, Andras Retzler <[email protected]>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL ANDRAS RETZLER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <limits.h>
#include "libcsdr.h"
#include "predefined.h"
#include <assert.h>
#include <stdarg.h>
/*
_ _ __ _ _
(_) | | / _| | | (_)
__ ___ _ __ __| | _____ __ | |_ _ _ _ __ ___| |_ _ ___ _ __ ___
\ \ /\ / / | '_ \ / _` |/ _ \ \ /\ / / | _| | | | '_ \ / __| __| |/ _ \| '_ \/ __|
\ V V /| | | | | (_| | (_) \ V V / | | | |_| | | | | (__| |_| | (_) | | | \__ \
\_/\_/ |_|_| |_|\__,_|\___/ \_/\_/ |_| \__,_|_| |_|\___|\__|_|\___/|_| |_|___/
*/
#define MFIRDES_GWS(NAME) \
if(!strcmp( #NAME , input )) return WINDOW_ ## NAME;
window_t firdes_get_window_from_string(char* input)
{
MFIRDES_GWS(BOXCAR);
MFIRDES_GWS(BLACKMAN);
MFIRDES_GWS(HAMMING);
return WINDOW_DEFAULT;
}
#define MFIRDES_GSW(NAME) \
if(window == WINDOW_ ## NAME) return #NAME;
char* firdes_get_string_from_window(window_t window)
{
MFIRDES_GSW(BOXCAR);
MFIRDES_GSW(BLACKMAN);
MFIRDES_GSW(HAMMING);
return "INVALID";
}
float firdes_wkernel_blackman(float rate)
{
//Explanation at Chapter 16 of dspguide.com, page 2
//Blackman window has better stopband attentuation and passband ripple than Hamming, but it has slower rolloff.
rate=0.5+rate/2;
return 0.42-0.5*cos(2*PI*rate)+0.08*cos(4*PI*rate);
}
float firdes_wkernel_hamming(float rate)
{
//Explanation at Chapter 16 of dspguide.com, page 2
//Hamming window has worse stopband attentuation and passband ripple than Blackman, but it has faster rolloff.
rate=0.5+rate/2;
return 0.54-0.46*cos(2*PI*rate);
}
float firdes_wkernel_boxcar(float rate)
{ //"Dummy" window kernel, do not use; an unwindowed FIR filter may have bad frequency response
return 1.0;
}
float (*firdes_get_window_kernel(window_t window))(float)
{
if(window==WINDOW_HAMMING) return firdes_wkernel_hamming;
else if(window==WINDOW_BLACKMAN) return firdes_wkernel_blackman;
else if(window==WINDOW_BOXCAR) return firdes_wkernel_boxcar;
else return firdes_get_window_kernel(WINDOW_DEFAULT);
}
/*
______ _____ _____ __ _ _ _ _ _
| ____|_ _| __ \ / _(_) | | | | (_)
| |__ | | | |__) | | |_ _| | |_ ___ _ __ __| | ___ ___ _ __ _ _ __
| __| | | | _ / | _| | | __/ _ \ '__| / _` |/ _ \/ __| |/ _` | '_ \
| | _| |_| | \ \ | | | | | || __/ | | (_| | __/\__ \ | (_| | | | |
|_| |_____|_| \_\ |_| |_|_|\__\___|_| \__,_|\___||___/_|\__, |_| |_|
__/ |
|___/
*/
void normalize_fir_f(float* input, float* output, int length)
{
//Normalize filter kernel
float sum=0;
for(int i=0;i<length;i++) //@normalize_fir_f: normalize pass 1
sum+=input[i];
for(int i=0;i<length;i++) //@normalize_fir_f: normalize pass 2
output[i]=input[i]/sum;
}
void firdes_lowpass_f(float *output, int length, float cutoff_rate, window_t window)
{ //Generates symmetric windowed sinc FIR filter real taps
// length should be odd
// cutoff_rate is (cutoff frequency/sampling frequency)
//Explanation at Chapter 16 of dspguide.com
int middle=length/2;
float temp;
float (*window_function)(float) = firdes_get_window_kernel(window);
output[middle]=2*PI*cutoff_rate*window_function(0);
for(int i=1; i<=middle; i++) //@@firdes_lowpass_f: calculate taps
{
output[middle-i]=output[middle+i]=(sin(2*PI*cutoff_rate*i)/i)*window_function((float)i/middle);
//printf("%g %d %d %d %d | %g\n",output[middle-i],i,middle,middle+i,middle-i,sin(2*PI*cutoff_rate*i));
}
normalize_fir_f(output,output,length);
}
void firdes_bandpass_c(complexf *output, int length, float lowcut, float highcut, window_t window)
{
//To generate a complex filter:
// 1. we generate a real lowpass filter with a bandwidth of highcut-lowcut
// 2. we shift the filter taps spectrally by multiplying with e^(j*w), so we get complex taps
//(tnx HA5FT)
float* realtaps = (float*)malloc(sizeof(float)*length);
firdes_lowpass_f(realtaps, length, (highcut-lowcut)/2, window);
float filter_center=(highcut+lowcut)/2;
float phase=0, sinval, cosval;
for(int i=0; i<length; i++) //@@firdes_bandpass_c
{
cosval=cos(phase);
sinval=sin(phase);
phase+=2*PI*filter_center;
while(phase>2*PI) phase-=2*PI; //@@firdes_bandpass_c
while(phase<0) phase+=2*PI;
iof(output,i)=cosval*realtaps[i];
qof(output,i)=sinval*realtaps[i];
//output[i] := realtaps[i] * e^j*w
}
}
int firdes_filter_len(float transition_bw)
{
int result=4.0/transition_bw;
if (result%2==0) result++; //number of symmetric FIR filter taps should be odd
return result;
}
/*
_____ _____ _____ __ _ _
| __ \ / ____| __ \ / _| | | (_)
| | | | (___ | |__) | | |_ _ _ _ __ ___| |_ _ ___ _ __ ___
| | | |\___ \| ___/ | _| | | | '_ \ / __| __| |/ _ \| '_ \/ __|
| |__| |____) | | | | | |_| | | | | (__| |_| | (_) | | | \__ \
|_____/|_____/|_| |_| \__,_|_| |_|\___|\__|_|\___/|_| |_|___/
*/
float shift_math_cc(complexf *input, complexf* output, int input_size, float rate, float starting_phase)
{
rate*=2;
//Shifts the complex spectrum. Basically a complex mixer. This version uses cmath.
float phase=starting_phase;
float phase_increment=rate*PI;
float cosval, sinval;
for(int i=0;i<input_size; i++) //@shift_math_cc
{
cosval=cos(phase);
sinval=sin(phase);
//we multiply two complex numbers.
//how? enter this to maxima (software) for explanation:
// (a+b*%i)*(c+d*%i), rectform;
iof(output,i)=cosval*iof(input,i)-sinval*qof(input,i);
qof(output,i)=sinval*iof(input,i)+cosval*qof(input,i);
phase+=phase_increment;
while(phase>2*PI) phase-=2*PI; //@shift_math_cc: normalize phase
while(phase<0) phase+=2*PI;
}
return phase;
}
shift_table_data_t shift_table_init(int table_size)
{
//RTODO
shift_table_data_t output;
output.table=(float*)malloc(sizeof(float)*table_size);
output.table_size=table_size;
for(int i=0;i<table_size;i++)
{
output.table[i]=sin(((float)i/table_size)*(PI/2));
}
return output;
}
void shift_table_deinit(shift_table_data_t table_data)
{
free(table_data.table);
}
float shift_table_cc(complexf* input, complexf* output, int input_size, float rate, shift_table_data_t table_data, float starting_phase)
{
//RTODO
rate*=2;
//Shifts the complex spectrum. Basically a complex mixer. This version uses a pre-built sine table.
float phase=starting_phase;
float phase_increment=rate*PI;
float cosval, sinval;
for(int i=0;i<input_size; i++) //@shift_math_cc
{
int sin_index, cos_index, temp_index, sin_sign, cos_sign;
//float vphase=fmodf(phase,PI/2); //between 0 and 90deg
int quadrant=phase/(PI/2); //between 0 and 3
float vphase=phase-quadrant*(PI/2);
sin_index=(vphase/(PI/2))*table_data.table_size;
cos_index=table_data.table_size-1-sin_index;
if(quadrant&1) //in quadrant 1 and 3
{
temp_index=sin_index;
sin_index=cos_index;
cos_index=temp_index;
}
sin_sign=(quadrant>1)?-1:1; //in quadrant 2 and 3
cos_sign=(quadrant&&quadrant<3)?-1:1; //in quadrant 1 and 2
sinval=sin_sign*table_data.table[sin_index];
cosval=cos_sign*table_data.table[cos_index];
//we multiply two complex numbers.
//how? enter this to maxima (software) for explanation:
// (a+b*%i)*(c+d*%i), rectform;
iof(output,i)=cosval*iof(input,i)-sinval*qof(input,i);
qof(output,i)=sinval*iof(input,i)+cosval*qof(input,i);
phase+=phase_increment;
while(phase>2*PI) phase-=2*PI; //@shift_math_cc: normalize phase
while(phase<0) phase+=2*PI;
}
return phase;
}
shift_unroll_data_t shift_unroll_init(float rate, int size)
{
shift_unroll_data_t output;
output.phase_increment=2*rate*PI;
output.size = size;
output.dsin=(float*)malloc(sizeof(float)*size);
output.dcos=(float*)malloc(sizeof(float)*size);
float myphase = 0;
for(int i=0;i<size;i++)
{
myphase += output.phase_increment;
while(myphase>PI) myphase-=2*PI;
while(myphase<-PI) myphase+=2*PI;
output.dsin[i]=sin(myphase);
output.dcos[i]=cos(myphase);
}
return output;
}
float shift_unroll_cc(complexf *input, complexf* output, int input_size, shift_unroll_data_t* d, float starting_phase)
{
//input_size should be multiple of 4
//fprintf(stderr, "shift_addfast_cc: input_size = %d\n", input_size);
float cos_start=cos(starting_phase);
float sin_start=sin(starting_phase);
register float cos_val, sin_val;
for(int i=0;i<input_size; i++) //@shift_unroll_cc
{
cos_val = cos_start * d->dcos[i] - sin_start * d->dsin[i];
sin_val = sin_start * d->dcos[i] + cos_start * d->dsin[i];
iof(output,i)=cos_val*iof(input,i)-sin_val*qof(input,i);
qof(output,i)=sin_val*iof(input,i)+cos_val*qof(input,i);
}
starting_phase+=input_size*d->phase_increment;
while(starting_phase>PI) starting_phase-=2*PI;
while(starting_phase<-PI) starting_phase+=2*PI;
return starting_phase;
}
shift_addfast_data_t shift_addfast_init(float rate)
{
shift_addfast_data_t output;
output.phase_increment=2*rate*PI;
for(int i=0;i<4;i++)
{
output.dsin[i]=sin(output.phase_increment*(i+1));
output.dcos[i]=cos(output.phase_increment*(i+1));
}
return output;
}
#ifdef NEON_OPTS
#pragma message "Manual NEON optimizations are ON: we have a faster shift_addfast_cc now."
float shift_addfast_cc(complexf *input, complexf* output, int input_size, shift_addfast_data_t* d, float starting_phase)
{
//input_size should be multiple of 4
float cos_start[4], sin_start[4];
float cos_vals[4], sin_vals[4];
for(int i=0;i<4;i++)
{
cos_start[i] = cos(starting_phase);
sin_start[i] = sin(starting_phase);
}
float* pdcos = d->dcos;
float* pdsin = d->dsin;
register float* pinput = (float*)input;
register float* pinput_end = (float*)(input+input_size);
register float* poutput = (float*)output;
//Register map:
#define RDCOS "q0" //dcos, dsin
#define RDSIN "q1"
#define RCOSST "q2" //cos_start, sin_start
#define RSINST "q3"
#define RCOSV "q4" //cos_vals, sin_vals
#define RSINV "q5"
#define ROUTI "q6" //output_i, output_q
#define ROUTQ "q7"
#define RINPI "q8" //input_i, input_q
#define RINPQ "q9"
#define R3(x,y,z) x ", " y ", " z "\n\t"
asm volatile( //(the range of q is q0-q15)
" vld1.32 {" RDCOS "}, [%[pdcos]]\n\t"
" vld1.32 {" RDSIN "}, [%[pdsin]]\n\t"
" vld1.32 {" RCOSST "}, [%[cos_start]]\n\t"
" vld1.32 {" RSINST "}, [%[sin_start]]\n\t"
"for_addfast: vld2.32 {" RINPI "-" RINPQ "}, [%[pinput]]!\n\t" //load q0 and q1 directly from the memory address stored in pinput, with interleaving (so that we get the I samples in RINPI and the Q samples in RINPQ), also increment the memory address in pinput (hence the "!" mark)
//C version:
//cos_vals[j] = cos_start * d->dcos[j] - sin_start * d->dsin[j];
//sin_vals[j] = sin_start * d->dcos[j] + cos_start * d->dsin[j];
" vmul.f32 " R3(RCOSV, RCOSST, RDCOS) //cos_vals[i] = cos_start * d->dcos[i]
" vmls.f32 " R3(RCOSV, RSINST, RDSIN) //cos_vals[i] -= sin_start * d->dsin[i]
" vmul.f32 " R3(RSINV, RSINST, RDCOS) //sin_vals[i] = sin_start * d->dcos[i]
" vmla.f32 " R3(RSINV, RCOSST, RDSIN) //sin_vals[i] += cos_start * d->dsin[i]
//C version:
//iof(output,4*i+j)=cos_vals[j]*iof(input,4*i+j)-sin_vals[j]*qof(input,4*i+j);
//qof(output,4*i+j)=sin_vals[j]*iof(input,4*i+j)+cos_vals[j]*qof(input,4*i+j);
" vmul.f32 " R3(ROUTI, RCOSV, RINPI) //output_i = cos_vals * input_i
" vmls.f32 " R3(ROUTI, RSINV, RINPQ) //output_i -= sin_vals * input_q
" vmul.f32 " R3(ROUTQ, RSINV, RINPI) //output_q = sin_vals * input_i
" vmla.f32 " R3(ROUTQ, RCOSV, RINPQ) //output_i += cos_vals * input_q
" vst2.32 {" ROUTI "-" ROUTQ "}, [%[poutput]]!\n\t" //store the outputs in memory
//" add %[poutput],%[poutput],#32\n\t"
" vdup.32 " RCOSST ", d9[1]\n\t" // cos_start[0-3] = cos_vals[3]
" vdup.32 " RSINST ", d11[1]\n\t" // sin_start[0-3] = sin_vals[3]
" cmp %[pinput], %[pinput_end]\n\t" //if(pinput != pinput_end)
" bcc for_addfast\n\t" // then goto for_addfast
:
[pinput]"+r"(pinput), [poutput]"+r"(poutput) //output operand list -> C variables that we will change from ASM
:
[pinput_end]"r"(pinput_end), [pdcos]"r"(pdcos), [pdsin]"r"(pdsin), [sin_start]"r"(sin_start), [cos_start]"r"(cos_start) //input operand list
:
"memory", "q0", "q1", "q2", "q4", "q5", "q6", "q7", "q8", "q9", "cc" //clobber list
);
starting_phase+=input_size*d->phase_increment;
while(starting_phase>PI) starting_phase-=2*PI;
while(starting_phase<-PI) starting_phase+=2*PI;
return starting_phase;
}
#else
#if 1
#define SADF_L1(j) cos_vals_ ## j = cos_start * dcos_ ## j - sin_start * dsin_ ## j; \
sin_vals_ ## j = sin_start * dcos_ ## j + cos_start * dsin_ ## j;
#define SADF_L2(j) iof(output,4*i+j)=(cos_vals_ ## j)*iof(input,4*i+j)-(sin_vals_ ## j)*qof(input,4*i+j); \
qof(output,4*i+j)=(sin_vals_ ## j)*iof(input,4*i+j)+(cos_vals_ ## j)*qof(input,4*i+j);
float shift_addfast_cc(complexf *input, complexf* output, int input_size, shift_addfast_data_t* d, float starting_phase)
{
//input_size should be multiple of 4
//fprintf(stderr, "shift_addfast_cc: input_size = %d\n", input_size);
float cos_start=cos(starting_phase);
float sin_start=sin(starting_phase);
float register cos_vals_0, cos_vals_1, cos_vals_2, cos_vals_3,
sin_vals_0, sin_vals_1, sin_vals_2, sin_vals_3,
dsin_0 = d->dsin[0], dsin_1 = d->dsin[1], dsin_2 = d->dsin[2], dsin_3 = d->dsin[3],
dcos_0 = d->dcos[0], dcos_1 = d->dcos[1], dcos_2 = d->dcos[2], dcos_3 = d->dcos[3];
for(int i=0;i<input_size/4; i++) //@shift_addfast_cc
{
SADF_L1(0)
SADF_L1(1)
SADF_L1(2)
SADF_L1(3)
SADF_L2(0)
SADF_L2(1)
SADF_L2(2)
SADF_L2(3)
cos_start = cos_vals_3;
sin_start = sin_vals_3;
}
starting_phase+=input_size*d->phase_increment;
while(starting_phase>PI) starting_phase-=2*PI;
while(starting_phase<-PI) starting_phase+=2*PI;
return starting_phase;
}
#else
float shift_addfast_cc(complexf *input, complexf* output, int input_size, shift_addfast_data_t* d, float starting_phase)
{
//input_size should be multiple of 4
//fprintf(stderr, "shift_addfast_cc: input_size = %d\n", input_size);
float cos_start=cos(starting_phase);
float sin_start=sin(starting_phase);
float cos_vals[4], sin_vals[4];
for(int i=0;i<input_size/4; i++) //@shift_addfast_cc
{
for(int j=0;j<4;j++) //@shift_addfast_cc
{
cos_vals[j] = cos_start * d->dcos[j] - sin_start * d->dsin[j];
sin_vals[j] = sin_start * d->dcos[j] + cos_start * d->dsin[j];
}
for(int j=0;j<4;j++) //@shift_addfast_cc
{
iof(output,4*i+j)=cos_vals[j]*iof(input,4*i+j)-sin_vals[j]*qof(input,4*i+j);
qof(output,4*i+j)=sin_vals[j]*iof(input,4*i+j)+cos_vals[j]*qof(input,4*i+j);
}
cos_start = cos_vals[3];
sin_start = sin_vals[3];
}
starting_phase+=input_size*d->phase_increment;
while(starting_phase>PI) starting_phase-=2*PI;
while(starting_phase<-PI) starting_phase+=2*PI;
return starting_phase;
}
#endif
#endif
#ifdef NEON_OPTS
#pragma message "Manual NEON optimizations are ON: we have a faster fir_decimate_cc now."
//max help: http://community.arm.com/groups/android-community/blog/2015/03/27/arm-neon-programming-quick-reference
int fir_decimate_cc(complexf *input, complexf *output, int input_size, int decimation, float *taps, int taps_length)
{
//Theory: http://www.dspguru.com/dsp/faqs/multirate/decimation
//It uses real taps. It returns the number of output samples actually written.
//It needs overlapping input based on its returned value:
//number of processed input samples = returned value * decimation factor
//The output buffer should be at least input_length / 3.
// i: input index | ti: tap index | oi: output index
int oi=0;
for(int i=0; i<input_size; i+=decimation) //@fir_decimate_cc: outer loop
{
if(i+taps_length>input_size) break;
register float* pinput=(float*)&(input[i]);
register float* ptaps=taps;
register float* ptaps_end=taps+taps_length;
float quad_acciq [8];
/*
q0, q1: input signal I sample and Q sample
q2: taps
q4, q5: accumulator for I branch and Q branch (will be the output)
*/
asm volatile(
" veor q4, q4\n\t"
" veor q5, q5\n\t"
"for_fdccasm: vld2.32 {q0-q1}, [%[pinput]]!\n\t" //load q0 and q1 directly from the memory address stored in pinput, with interleaving (so that we get the I samples in q0 and the Q samples in q1), also increment the memory address in pinput (hence the "!" mark) //http://community.arm.com/groups/processors/blog/2010/03/17/coding-for-neon--part-1-load-and-stores
" vld1.32 {q2}, [%[ptaps]]!\n\t"
" vmla.f32 q4, q0, q2\n\t" //quad_acc_i += quad_input_i * quad_taps_1 //http://stackoverflow.com/questions/3240440/how-to-use-the-multiply-and-accumulate-intrinsics-in-arm-cortex-a8 //http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489e/CIHEJBIE.html
" vmla.f32 q5, q1, q2\n\t" //quad_acc_q += quad_input_q * quad_taps_1
" cmp %[ptaps], %[ptaps_end]\n\t" //if(ptaps != ptaps_end)
" bcc for_fdccasm\n\t" // then goto for_fdcasm
" vst1.32 {q4}, [%[quad_acci]]\n\t" //if the loop is finished, store the two accumulators in memory
" vst1.32 {q5}, [%[quad_accq]]\n\t"
:
[pinput]"+r"(pinput), [ptaps]"+r"(ptaps) //output operand list
:
[ptaps_end]"r"(ptaps_end), [quad_acci]"r"(quad_acciq), [quad_accq]"r"(quad_acciq+4) //input operand list
:
"memory", "q0", "q1", "q2", "q4", "q5", "cc" //clobber list
);
//original for loops for reference:
//for(int ti=0; ti<taps_length; ti++) acci += (iof(input,i+ti)) * taps[ti]; //@fir_decimate_cc: i loop
//for(int ti=0; ti<taps_length; ti++) accq += (qof(input,i+ti)) * taps[ti]; //@fir_decimate_cc: q loop
//for(int n=0;n<8;n++) fprintf(stderr, "\n>> [%d] %g \n", n, quad_acciq[n]);
iof(output,oi)=quad_acciq[0]+quad_acciq[1]+quad_acciq[2]+quad_acciq[3]; //we're still not ready, as we have to add up the contents of a quad accumulator register to get a single accumulated value
qof(output,oi)=quad_acciq[4]+quad_acciq[5]+quad_acciq[6]+quad_acciq[7];
oi++;
}
return oi;
}
#else
int fir_decimate_cc(complexf *input, complexf *output, int input_size, int decimation, float *taps, int taps_length)
{
//Theory: http://www.dspguru.com/dsp/faqs/multirate/decimation
//It uses real taps. It returns the number of output samples actually written.
//It needs overlapping input based on its returned value:
//number of processed input samples = returned value * decimation factor
//The output buffer should be at least input_length / 3.
// i: input index | ti: tap index | oi: output index
int oi=0;
for(int i=0; i<input_size; i+=decimation) //@fir_decimate_cc: outer loop
{
if(i+taps_length>input_size) break;
float acci=0;
for(int ti=0; ti<taps_length; ti++) acci += (iof(input,i+ti)) * taps[ti]; //@fir_decimate_cc: i loop
float accq=0;
for(int ti=0; ti<taps_length; ti++) accq += (qof(input,i+ti)) * taps[ti]; //@fir_decimate_cc: q loop
iof(output,oi)=acci;
qof(output,oi)=accq;
oi++;
}
return oi;
}
#endif
/*
int fir_decimate_cc(complexf *input, complexf *output, int input_size, int decimation, float *taps, int taps_length)
{
//Theory: http://www.dspguru.com/dsp/faqs/multirate/decimation
//It uses real taps. It returns the number of output samples actually written.
//It needs overlapping input based on its returned value:
//number of processed input samples = returned value * decimation factor
//The output buffer should be at least input_length / 3.
// i: input index | ti: tap index | oi: output index
int oi=0;
for(int i=0; i<input_size; i+=decimation) //@fir_decimate_cc: outer loop
{
if(i+taps_length>input_size) break;
float acci=0;
int taps_halflength = taps_length/2;
for(int ti=0; ti<taps_halflength; ti++) acci += (iof(input,i+ti)+iof(input,i+taps_length-ti)) * taps[ti]; //@fir_decimate_cc: i loop
float accq=0;
for(int ti=0; ti<taps_halflength; ti++) accq += (qof(input,i+ti)+qof(input,i+taps_length-ti)) * taps[ti]; //@fir_decimate_cc: q loop
iof(output,oi)=acci+iof(input,i+taps_halflength)*taps[taps_halflength];
qof(output,oi)=accq+qof(input,i+taps_halflength)*taps[taps_halflength];
oi++;
}
return oi;
}
*/
int fir_interpolate_cc(complexf *input, complexf *output, int input_size, int interpolation, float *taps, int taps_length)
{
//i: input index
//oi: output index
//ti: tap index
//ti: secondary index (inside filter function)
//ip: interpolation phase (0 <= ip < interpolation)
int oi=0;
for(int i=0; i<input_size; i++) //@fir_interpolate_cc: outer loop
{
if(i*interpolation + (interpolation-1) + taps_length > input_size*interpolation) break;
for(int ip=0; ip<interpolation; ip++)
{
float acci=0;
float accq=0;
//int tistart = (interpolation-ip)%interpolation;
int tistart = (interpolation-ip); //why does this work? why don't we need the % part?
for(int ti=tistart, si=0; ti<taps_length; (ti+=interpolation), (si++)) acci += (iof(input,i+si)) * taps[ti]; //@fir_interpolate_cc: i loop
for(int ti=tistart, si=0; ti<taps_length; (ti+=interpolation), (si++)) accq += (qof(input,i+si)) * taps[ti]; //@fir_interpolate_cc: q loop
iof(output,oi)=acci;
qof(output,oi)=accq;
oi++;
}
}
return oi;
}
rational_resampler_ff_t rational_resampler_ff(float *input, float *output, int input_size, int interpolation, int decimation, float *taps, int taps_length, int last_taps_delay)
{
//Theory: http://www.dspguru.com/dsp/faqs/multirate/resampling
//oi: output index, i: tap index
int output_size=input_size*interpolation/decimation;
int oi;
int startingi, delayi;
//fprintf(stderr,"rational_resampler_ff | interpolation = %d | decimation = %d\ntaps_length = %d | input_size = %d | output_size = %d | last_taps_delay = %d\n",interpolation,decimation,taps_length,input_size,output_size,last_taps_delay);
for (oi=0; oi<output_size; oi++) //@rational_resampler_ff (outer loop)
{
float acc=0;
startingi=(oi*decimation+interpolation-1-last_taps_delay)/interpolation; //index of first input item to apply FIR on
//delayi=startingi*interpolation-oi*decimation; //delay on FIR taps
delayi=(last_taps_delay+startingi*interpolation-oi*decimation)%interpolation; //delay on FIR taps
if(startingi+taps_length/interpolation+1>input_size) break; //we can't compute the FIR filter to some input samples at the end
//fprintf(stderr,"outer loop | oi = %d | startingi = %d | taps delay = %d\n",oi,startingi,delayi);
for(int i=0; i<(taps_length-delayi)/interpolation; i++) //@rational_resampler_ff (inner loop)
{
//fprintf(stderr,"inner loop | input index = %d | tap index = %d | acc = %g\n",startingi+ii,i,acc);
acc+=input[startingi+i]*taps[delayi+i*interpolation];
}
output[oi]=acc*interpolation;
}
rational_resampler_ff_t d;
d.input_processed=startingi;
d.output_size=oi;
d.last_taps_delay=delayi;
return d;
}
/*
The greatest challenge in resampling is figuring out which tap should be applied to which sample.
Typical test patterns for rational_resampler_ff:
interpolation = 3, decimation = 1
values of [oi, startingi, taps delay] in the outer loop should be:
0 0 0
1 1 2
2 1 1
3 1 0
4 2 2
5 2 1
interpolation = 3, decimation = 2
values of [oi, startingi, taps delay] in the outer loop should be:
0 0 0
1 1 1
2 2 2
3 2 0
4 3 1
5 4 2
*/
void rational_resampler_get_lowpass_f(float* output, int output_size, int interpolation, int decimation, window_t window)
{
//See 4.1.6 at: http://www.dspguru.com/dsp/faqs/multirate/resampling
float cutoff_for_interpolation=1.0/interpolation;
float cutoff_for_decimation=1.0/decimation;
float cutoff = (cutoff_for_interpolation<cutoff_for_decimation)?cutoff_for_interpolation:cutoff_for_decimation; //get the lower
firdes_lowpass_f(output, output_size, cutoff/2, window);
}
float inline fir_one_pass_ff(float* input, float* taps, int taps_length)
{
float acc=0;
for(int i=0;i<taps_length;i++) acc+=taps[i]*input[i]; //@fir_one_pass_ff
return acc;
}
old_fractional_decimator_ff_t old_fractional_decimator_ff(float* input, float* output, int input_size, float rate, float *taps, int taps_length, old_fractional_decimator_ff_t d)
{
if(rate<=1.0) return d; //sanity check, can't decimate <=1.0
//This routine can handle floating point decimation rates.
//It linearly interpolates between two samples that are taken into consideration from the filtered input.
int oi=0;
int index_high;
float where=d.remain;
float result_high, result_low;
if(where==0.0) //in the first iteration index_high may be zero (so using the item index_high-1 would lead to invalid memory access).
{
output[oi++]=fir_one_pass_ff(input,taps,taps_length);
where+=rate;
}
int previous_index_high=-1;
//we optimize to calculate ceilf(where) only once every iteration, so we do it here:
for(;(index_high=ceilf(where))+taps_length<input_size;where+=rate) //@fractional_decimator_ff
{
if(previous_index_high==index_high-1) result_low=result_high; //if we step less than 2.0 then we do already have the result for the FIR filter for that index
else result_low=fir_one_pass_ff(input+index_high-1,taps,taps_length);
result_high=fir_one_pass_ff(input+index_high,taps,taps_length);
float register rate_between_samples=where-index_high+1;
output[oi++]=result_low*(1-rate_between_samples)+result_high*rate_between_samples;
previous_index_high=index_high;
}
d.input_processed=index_high-1;
d.remain=where-d.input_processed;
d.output_size=oi;
return d;
}
fractional_decimator_ff_t fractional_decimator_ff_init(float rate, int num_poly_points, float* taps, int taps_length)
{
fractional_decimator_ff_t d;
d.num_poly_points = num_poly_points&~1; //num_poly_points needs to be even!
d.poly_precalc_denomiator = (float*)malloc(d.num_poly_points*sizeof(float));
//x0..x3
//-1,0,1,2
//-(4/2)+1
//x0..x5
//-2,-1,0,1,2,3
d.xifirst=-(num_poly_points/2)+1, d.xilast=num_poly_points/2;
int id = 0; //index in poly_precalc_denomiator
for(int xi=d.xifirst;xi<=d.xilast;xi++)
{
d.poly_precalc_denomiator[id]=1;
for(int xj=d.xifirst;xj<=d.xilast;xj++)
{
if(xi!=xj) d.poly_precalc_denomiator[id] *= (xi-xj); //poly_precalc_denomiator could be integer as well. But that would later add a necessary conversion.
}
id++;
}
d.where=-d.xifirst;
d.coeffs_buf=(float*)malloc(d.num_poly_points*sizeof(float));
d.filtered_buf=(float*)malloc(d.num_poly_points*sizeof(float));
//d.last_inputs_circbuf = (float)malloc(d.num_poly_points*sizeof(float));
//d.last_inputs_startsat = 0;
//d.last_inputs_samplewhere = -1;
//for(int i=0;i<num_poly_points; i++) d.last_inputs_circbuf[i] = 0;
d.rate = rate;
d.taps = taps;
d.taps_length = taps_length;
d.input_processed = 0;
return d;
}
#define DEBUG_ASSERT 1
void fractional_decimator_ff(float* input, float* output, int input_size, fractional_decimator_ff_t* d)
{
//This routine can handle floating point decimation rates.
//It applies polynomial interpolation to samples that are taken into consideration from a pre-filtered input.
//The pre-filter can be switched off by applying taps=NULL.
//fprintf(stderr, "drate=%f\n", d->rate);
if(DEBUG_ASSERT) assert(d->rate > 1.0);
if(DEBUG_ASSERT) assert(d->where >= -d->xifirst);
int oi=0; //output index
int index_high;
#define FD_INDEX_LOW (index_high-1)
//we optimize to calculate ceilf(where) only once every iteration, so we do it here:
for(;(index_high=ceilf(d->where))+d->num_poly_points+d->taps_length<input_size;d->where+=d->rate) //@fractional_decimator_ff
{
//d->num_poly_points above is theoretically more than we could have here, but this makes the spectrum look good
int sxifirst = FD_INDEX_LOW + d->xifirst;
int sxilast = FD_INDEX_LOW + d->xilast;
if(d->taps)
for(int wi=0;wi<d->num_poly_points;wi++) d->filtered_buf[wi] = fir_one_pass_ff(input+FD_INDEX_LOW+wi, d->taps, d->taps_length);
else
for(int wi=0;wi<d->num_poly_points;wi++) d->filtered_buf[wi] = *(input+FD_INDEX_LOW+wi);
int id=0;
float xwhere = d->where - FD_INDEX_LOW;
for(int xi=d->xifirst;xi<=d->xilast;xi++)
{
d->coeffs_buf[id]=1;
for(int xj=d->xifirst;xj<=d->xilast;xj++)
{
if(xi!=xj) d->coeffs_buf[id] *= (xwhere-xj);
}
id++;
}
float acc = 0;
for(int i=0;i<d->num_poly_points;i++)
{
acc += (d->coeffs_buf[i]/d->poly_precalc_denomiator[i])*d->filtered_buf[i]; //(xnom/xden)*yn
}
output[oi++]=acc;
}
d->input_processed = FD_INDEX_LOW + d->xifirst;
d->where -= d->input_processed;
d->output_size = oi;
}
/*
* Some notes to myself on the circular buffer I wanted to implement here:
int last_input_samplewhere_shouldbe = (index_high-1)+xifirst;
int last_input_offset = last_input_samplewhere_shouldbe - d->last_input_samplewhere;
if(last_input_offset < num_poly_points)
{
//if we can move the last_input circular buffer, we move, and add the new samples at the end
d->last_inputs_startsat += last_input_offset;
d->last_inputs_startsat %= num_poly_points;
int num_copied_samples = 0;
for(int i=0; i<last_input_offset; i++)
{
d->last_inputs_circbuf[i]=
}
d->last_input_samplewhere = d->las
}
However, I think I should just rather do a continuous big buffer.
*/
void apply_fir_fft_cc(FFT_PLAN_T* plan, FFT_PLAN_T* plan_inverse, complexf* taps_fft, complexf* last_overlap, int overlap_size)
{
//use the overlap & add method for filtering
//calculate FFT on input buffer
fft_execute(plan);
//multiply the filter and the input
complexf* in = plan->output;
complexf* out = plan_inverse->input;
for(int i=0;i<plan->size;i++) //@apply_fir_fft_cc: multiplication
{
iof(out,i)=iof(in,i)*iof(taps_fft,i)-qof(in,i)*qof(taps_fft,i);
qof(out,i)=iof(in,i)*qof(taps_fft,i)+qof(in,i)*iof(taps_fft,i);
}
//calculate inverse FFT on multiplied buffer
fft_execute(plan_inverse);
//add the overlap of the previous segment
complexf* result = plan_inverse->output;
for(int i=0;i<plan->size;i++) //@apply_fir_fft_cc: normalize by fft_size
{
iof(result,i)/=plan->size;
qof(result,i)/=plan->size;
}
for(int i=0;i<overlap_size;i++) //@apply_fir_fft_cc: add overlap
{
iof(result,i)=iof(result,i)+iof(last_overlap,i);
qof(result,i)=qof(result,i)+qof(last_overlap,i);
}
}
/*
__ __ _ _ _ _
/\ | \/ | | | | | | | | |
/ \ | \ / | __| | ___ _ __ ___ ___ __| |_ _| | __ _| |_ ___ _ __ ___
/ /\ \ | |\/| | / _` |/ _ \ '_ ` _ \ / _ \ / _` | | | | |/ _` | __/ _ \| '__/ __|
/ ____ \| | | | | (_| | __/ | | | | | (_) | (_| | |_| | | (_| | || (_) | | \__ \
/_/ \_\_| |_| \__,_|\___|_| |_| |_|\___/ \__,_|\__,_|_|\__,_|\__\___/|_| |___/
*/
void amdemod_cf(complexf* input, float *output, int input_size)
{
//@amdemod: i*i+q*q
for (int i=0; i<input_size; i++)
{
output[i]=iof(input,i)*iof(input,i)+qof(input,i)*qof(input,i);
}
//@amdemod: sqrt
for (int i=0; i<input_size; i++)
{
output[i]=sqrt(output[i]);
}
}
void amdemod_estimator_cf(complexf* input, float *output, int input_size, float alpha, float beta)
{
//concept is explained here:
//http://www.dspguru.com/dsp/tricks/magnitude-estimator
//default: optimize for min RMS error
if(alpha==0)
{
alpha=0.947543636291;
beta=0.392485425092;
}
//@amdemod_estimator
for (int i=0; i<input_size; i++)
{
float abs_i=iof(input,i);
if(abs_i<0) abs_i=-abs_i;
float abs_q=qof(input,i);
if(abs_q<0) abs_q=-abs_q;
float max_iq=abs_i;
if(abs_q>max_iq) max_iq=abs_q;
float min_iq=abs_i;
if(abs_q<min_iq) min_iq=abs_q;
output[i]=alpha*max_iq+beta*min_iq;
}
}
dcblock_preserve_t dcblock_ff(float* input, float* output, int input_size, float a, dcblock_preserve_t preserved)
{
//after AM demodulation, a DC blocking filter should be used to remove the DC component from the signal.
//Concept: http://peabody.sapp.org/class/dmp2/lab/dcblock/
//output size equals to input_size;
//preserve can be initialized to zero on first run.
if(a==0) a=0.999; //default value, simulate in octave: freqz([1 -1],[1 -0.99])
output[0]=input[0]-preserved.last_input+a*preserved.last_output;
for(int i=1; i<input_size; i++) //@dcblock_f
{
output[i]=input[i]-input[i-1]+a*output[i-1];
}
preserved.last_input=input[input_size-1];
preserved.last_output=output[input_size-1];
return preserved;
}
float fastdcblock_ff(float* input, float* output, int input_size, float last_dc_level)
{
//this DC block filter does moving average block-by-block.
//this is the most computationally efficient
//input and output buffer is allowed to be the same
//http://www.digitalsignallabs.com/dcblock.pdf
float avg=0.0;
for(int i=0;i<input_size;i++) //@fastdcblock_ff: calculate block average
{
avg+=input[i];
}
avg/=input_size;
float avgdiff=avg-last_dc_level;
//DC removal level will change lineraly from last_dc_level to avg.
for(int i=0;i<input_size;i++) //@fastdcblock_ff: remove DC component
{
float dc_removal_level=last_dc_level+avgdiff*((float)i/input_size);
output[i]=input[i]-dc_removal_level;
}
return avg;
}
//#define FASTAGC_MAX_GAIN (65e3)
#define FASTAGC_MAX_GAIN 50
void fastagc_ff(fastagc_ff_t* input, float* output)
{
//Gain is processed on blocks of samples.
//You have to supply three blocks of samples before the first block comes out.
//AGC reaction speed equals input_size*samp_rate*2
//The algorithm calculates target gain at the end of the first block out of the peak value of all the three blocks.
//This way the gain change can easily react if there is any peak in the third block.
//Pros: can be easily speeded up with loop vectorization, easy to implement
//Cons: needs 3 buffers, dos not behave similarly to real AGC circuits
//Get the peak value of new input buffer
float peak_input=0;
for(int i=0;i<input->input_size;i++) //@fastagc_ff: peak search
{
float val=fabs(input->buffer_input[i]);
if(val>peak_input) peak_input=val;
}
//Determine the maximal peak out of the three blocks
float target_peak=peak_input;
if(target_peak<input->peak_2) target_peak=input->peak_2;
if(target_peak<input->peak_1) target_peak=input->peak_1;
//we change the gain linearly on the apply_block from the last_gain to target_gain.
float target_gain=input->reference/target_peak;
if(target_gain>FASTAGC_MAX_GAIN) target_gain=FASTAGC_MAX_GAIN;
//fprintf(stderr, "target_gain: %g\n",target_gain);
for(int i=0;i<input->input_size;i++) //@fastagc_ff: apply gain
{
float rate=(float)i/input->input_size;
float gain=input->last_gain*(1.0-rate)+target_gain*rate;
output[i]=input->buffer_1[i]*gain;
}
//Shift the three buffers
float* temp_pointer=input->buffer_1;
input->buffer_1=input->buffer_2;
input->peak_1=input->peak_2;
input->buffer_2=input->buffer_input;
input->peak_2=peak_input;
input->buffer_input=temp_pointer;
input->last_gain=target_gain;
//fprintf(stderr,"target_gain=%g\n", target_gain);
}
/*
______ __ __ _ _ _ _
| ____| \/ | | | | | | | | |
| |__ | \ / | __| | ___ _ __ ___ ___ __| |_ _| | __ _| |_ ___ _ __ ___
| __| | |\/| | / _` |/ _ \ '_ ` _ \ / _ \ / _` | | | | |/ _` | __/ _ \| '__/ __|
| | | | | | | (_| | __/ | | | | | (_) | (_| | |_| | | (_| | || (_) | | \__ \
|_| |_| |_| \__,_|\___|_| |_| |_|\___/ \__,_|\__,_|_|\__,_|\__\___/|_| |___/